// Numbas version: finer_feedback_settings {"name": "Integration: Indefinite integral", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"variable_groups": [], "variables": {"b": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(2..5)", "description": "", "name": "b"}, "d": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1..9)", "description": "", "name": "d"}, "a": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "", "name": "a"}, "n": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(3..5)", "description": "", "name": "n"}}, "ungrouped_variables": ["a", "b", "d", "n"], "question_groups": [{"pickingStrategy": "all-ordered", "questions": [], "name": "", "pickQuestions": 0}], "name": "Integration: Indefinite integral", "functions": {}, "showQuestionGroupNames": false, "parts": [{"stepsPenalty": 1, "scripts": {}, "gaps": [{"answer": "(-{b})/({a*(n-1)}*({a}*x+{d})^{n-1}) + C", "vsetrange": [0, 1], "checkingaccuracy": 0.0001, "showCorrectAnswer": true, "expectedvariablenames": [], "notallowed": {"message": "

Input all numbers as integers or fractions and not decimals.

", "showStrings": false, "partialCredit": 0, "strings": ["."]}, "showpreview": true, "checkingtype": "reldiff", "scripts": {}, "checkvariablenames": false, "type": "jme", "answersimplification": "std", "marks": 3, "vsetrangepoints": 5}], "type": "gapfill", "prompt": "\n\t\t\t

$\\displaystyle \\int \\simplify[std]{{b}/(({a}*x+{d})^{n})} dx= \\phantom{{}}$[[0]]

\n\t\t\t

Input all numbers as integers or fractions and not decimals. Remember to include the constant of integration $C$.

\n\t\t\t

Click on Show steps to get help. You will lose 1 mark by doing so.

\n\t\t\t", "steps": [{"type": "information", "prompt": "

 \\[\\int (ax+b)^n \\;dx = \\frac{1}{a(n+1)}(ax+b)^{n+1}+C\\]

", "showCorrectAnswer": true, "scripts": {}, "marks": 0}], "showCorrectAnswer": true, "marks": 0}], "statement": "\n\t \n\t \n\t

Find the following indefinite integral.

\n\t \n\t \n\t \n\t

Input the constant of integration as $C$.

\n\t \n\t \n\t", "tags": ["calculus", "Calculus", "checked2015", "constant of integration", "indefinite integration", "integration", "integration by substitution", "MAS1601", "mas1601", "standard integrals", "Steps", "steps", "substitution"], "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers", "!noLeadingMinus"], "surdf": [{"result": "(sqrt(b)*a)/b", "pattern": "a/sqrt(b)"}]}, "preamble": {"css": "", "js": ""}, "type": "question", "metadata": {"notes": "\n\t\t

2/08/2012:

\n\t\t

Added tags.

\n\t\t

Added description.

\n\t\t

Added decimal point to forbidden strings along with message to user re input of numbers.

\n\t\t

Added a Step and message about Show steps included - losing 1 mark if used as it gives the formula for finding the integral. Increased marks to 3 for the question, so that can cope with losing a mark for using Show steps.

\n\t\t

Changed accuracy setting to relative difference of 0.00001 as we have negative powers.

\n\t\t

Checked calculation. OK.

\n\t\t

Added message in prompt  about including the constant of integration.

\n\t\t

Noted issue with steps-answer order and the messages/marks generated.

\n\t\t

Changed numerator to the range 2..5.

\n\t\t

Improved display in Advice.

\n\t\t

 

\n\t\t", "licence": "Creative Commons Attribution 4.0 International", "description": "

Find $\\displaystyle \\int \\frac{a}{(bx+c)^n}\\;dx$

"}, "variablesTest": {"condition": "", "maxRuns": 100}, "advice": "\n\t

Let $y = \\simplify[std]{{a}*x+{d}}$. Then,
\\[\\simplify[std]{{b}/(({a}*x+{d})^{n})} = \\simplify[std]{{b}/(y^{n})}.\\]

\n\t

Now,
\\[\\int \\simplify[std]{{b}/({a}*x+{d})^{n}} dx = \\int \\simplify[std]{{b}/(y^{n})} \\frac{dx}{dy} dy.\\]

\n\t

Rearrange $y = \\simplify[std]{{a}x+{d}}$ to get $\\displaystyle x = \\simplify[std]{(y-{b})/{a}}$, and hence $\\displaystyle\\frac{dx}{dy} = \\frac{1}{\\var{a}}$.

\n\t

$\\displaystyle \\int \\frac{1}{y^n} dx = -\\frac{1}{(n-1)y^{n-1}} + C$ is a standard integral, so we can now calculate the desired integral:

\n\t

\\[\\int \\simplify[std]{{b}/(y^{n})} \\frac{dx}{dy} dy = \\simplify[std]{{b}/({n-1}*y^{n-1})} \\cdot \\frac{1}{\\var{a}} + C = \\simplify[std]{(-{b})/({a*(n-1)}*({a}*x+{d})^{n-1}) + C}.\\]

\n\t", "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}]}]}], "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}]}