// Numbas version: finer_feedback_settings {"name": "Arithmetics of complex numbers IV", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"variable_groups": [], "variables": {"rz3": {"group": "Ungrouped variables", "templateType": "anything", "definition": "if(a3=re(z1),a3+random(1,-1),a3)", "description": "", "name": "rz3"}, "s1": {"group": "Ungrouped variables", "templateType": "anything", "definition": "random(1,-1)", "description": "", "name": "s1"}, "c1": {"group": "Ungrouped variables", "templateType": "anything", "definition": "s3*random(1..9)", "description": "", "name": "c1"}, "z1": {"group": "Ungrouped variables", "templateType": "anything", "definition": "s2*random(1..9)+s1*random(1..9)*i", "description": "", "name": "z1"}, "a3": {"group": "Ungrouped variables", "templateType": "anything", "definition": "s3*random(1..9)", "description": "", "name": "a3"}, "s3": {"group": "Ungrouped variables", "templateType": "anything", "definition": "random(1,-1)", "description": "", "name": "s3"}, "z2": {"group": "Ungrouped variables", "templateType": "anything", "definition": "re(z1)+s2*random(1,2)+s4*random(1..9)*i", "description": "", "name": "z2"}, "z3": {"group": "Ungrouped variables", "templateType": "anything", "definition": "rz3+s1*random(1..9)*i", "description": "", "name": "z3"}, "s2": {"group": "Ungrouped variables", "templateType": "anything", "definition": "random(1,-1)", "description": "", "name": "s2"}, "s4": {"group": "Ungrouped variables", "templateType": "anything", "definition": "random(1,-1)", "description": "", "name": "s4"}, "c2": {"group": "Ungrouped variables", "templateType": "anything", "definition": "random(1..5)", "description": "", "name": "c2"}}, "ungrouped_variables": ["s3", "s2", "s1", "s4", "a3", "rz3", "c2", "c1", "z1", "z2", "z3"], "name": "Arithmetics of complex numbers IV", "functions": {}, "parts": [{"prompt": "\n

\\[\\displaystyle z=\\simplify[!collectNumbers]{({z3}*{z2})/{z1}}\\]

\n

$z=\\;\\;$[[0]].

\n ", "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "useCustomName": false, "customName": "", "unitTests": [], "showFeedbackIcon": true, "scripts": {}, "gaps": [{"answer": "{re(conj(z1)*z3*z2)}/{abs(z1)^2}+{im(conj(z1)*z3*z2)}/{abs(z1)^2}*i", "mustmatchpattern": {"message": "Your answer is not in the form $a+bi$.", "pattern": "`+-((integer:$n/integer:$n`?))`? + ((`+-integer:$n`?/integer:$n`?)*i `| `+-i)`?", "partialCredit": 0, "nameToCompare": ""}, "vsetRangePoints": 5, "useCustomName": false, "checkingType": "absdiff", "valuegenerators": [], "vsetRange": [0, 1], "showFeedbackIcon": true, "type": "jme", "variableReplacementStrategy": "originalfirst", "checkingAccuracy": 0.001, "variableReplacements": [], "failureRate": 1, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "showPreview": true, "customName": "", "checkVariableNames": false, "unitTests": [], "scripts": {}, "answerSimplification": "std", "showCorrectAnswer": true, "marks": 1}], "type": "gapfill", "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "variableReplacements": [], "marks": 0, "sortAnswers": false}, {"prompt": "\n

\\[\\displaystyle z=\\simplify[!collectNumbers]{({z2}*{z1})}(\\var{z3})^{-1}\\]

\n

$z=\\;\\;$[[0]].

\n ", "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "useCustomName": false, "customName": "", "unitTests": [], "showFeedbackIcon": true, "scripts": {}, "gaps": [{"answer": "{re(conj(z3)*z1*z2)}/{abs(z3)^2}+{im(conj(z3)*z1*z2)}/{abs(z3)^2}*i", "mustmatchpattern": {"message": "Your answer is not in the form $a+bi$.", "pattern": "`+-((integer:$n/integer:$n`?))`? + ((`+-integer:$n`?/integer:$n`?)*i `| `+-i)`?", "partialCredit": 0, "nameToCompare": ""}, "vsetRangePoints": 5, "useCustomName": false, "checkingType": "absdiff", "valuegenerators": [], "vsetRange": [0, 1], "showFeedbackIcon": true, "type": "jme", "variableReplacementStrategy": "originalfirst", "checkingAccuracy": 0.001, "variableReplacements": [], "failureRate": 1, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "showPreview": true, "customName": "", "checkVariableNames": false, "unitTests": [], "scripts": {}, "answerSimplification": "std", "showCorrectAnswer": true, "marks": 1}], "type": "gapfill", "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "variableReplacements": [], "marks": 0, "sortAnswers": false}], "variablesTest": {"condition": "", "maxRuns": 100}, "statement": "

Express the following complex numbers $z$ in the form $a+bi$.

\n

Input $a$ and $b$ as fractions and not as decimals.

", "tags": ["algebra of complex numbers", "checked2015", "complex arithmetic", "complex numbers", "division of complex numbers", "inverse of complex numbers", "multiplication of complex numbers", "product of complex numbers"], "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers", "!noLeadingMinus", "!collectlikefractions"]}, "preamble": {"css": "", "js": ""}, "type": "question", "extensions": [], "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "

Composite multiplication and division of complex numbers. Two parts.

"}, "advice": "\n

a)
\\[\\begin{eqnarray*}z=\\simplify[!collectNumbers]{({z3}*{z2})/{z1}} &=&\\simplify[!collectNumbers]{({z3}*{z2}*{conj(z1)})/({z1}*{conj(z1)})}\\\\ &=&\\simplify[!collectNumbers]{({z3*z2}*{conj(z1)})/({abs(z1)^2})}\\\\ &=&\\simplify[!collectNumbers]{{z3*z2*conj(z1)}/{abs(z1)^2}}\\\\ &=& \\simplify[std]{{re(z3*z2*conj(z1))}/{abs(z1)^2}+{im(z3*z2*conj(z1))}/{abs(z1)^2}*i} \\end{eqnarray*} \\]

\n

b)
\\[\\begin{eqnarray*}z= \\simplify[!collectNumbers]{({z2}*{z1})}(\\var{z3})^{-1} &=& \\simplify[!collectNumbers]{({z2}*{z1})/{z3}}\\\\ &=&\\simplify[!collectNumbers]{({z2}*{z1}*{conj(z3)})/({z3}*{conj(z3)})}\\\\ &=&\\simplify[!collectNumbers]{({z2*z1}*{conj(z3)})/({abs(z3)^2})}\\\\ &=&\\simplify[!collectNumbers]{{z2*z1*conj(z3)}/{abs(z3)^2}}\\\\ &=& \\simplify[std]{{re(z2*z1*conj(z3))}/{abs(z3)^2}+{im(z2*z1*conj(z3))}/{abs(z3)^2}*i} \\end{eqnarray*} \\]

\n ", "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}]}]}], "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}]}