// Numbas version: finer_feedback_settings {"name": "Arithmetics of complex numbers V", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"variable_groups": [], "variables": {"s1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "name": "s1"}, "m": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(2000..5000)", "description": "", "name": "m"}, "rem": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(0..3)", "description": "", "name": "rem"}, "s4": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "name": "s4"}, "s2": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "name": "s2"}, "z2": {"templateType": "anything", "group": "Ungrouped variables", "definition": "s2*random(1..5)+s4*random(1..5)*i", "description": "", "name": "z2"}, "d1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(2,3)", "description": "", "name": "d1"}, "c1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(3..5)", "description": "", "name": "c1"}, "n": {"templateType": "anything", "group": "Ungrouped variables", "definition": "4*m+rem", "description": "", "name": "n"}, "s3": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "name": "s3"}, "z3": {"templateType": "anything", "group": "Ungrouped variables", "definition": "s2*random(1..5)+s3*random(1..5)*i", "description": "", "name": "z3"}, "z1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "s1*random(1..5)+s3*random(1..5)*i", "description": "", "name": "z1"}}, "ungrouped_variables": ["s3", "s2", "s1", "m", "s4", "d1", "rem", "c1", "n", "z1", "z2", "z3"], "question_groups": [{"pickingStrategy": "all-ordered", "questions": [], "name": "", "pickQuestions": 0}], "name": "Arithmetics of complex numbers V", "functions": {}, "showQuestionGroupNames": false, "parts": [{"prompt": "

\\[z=(\\var{z1})^{\\var{c1}}(\\var{conj(z1)})^{\\var{c1}}\\]
$z=\\;\\;$[[0]]

", "scripts": {}, "gaps": [{"answer": "{round((z1*conj(z1))^c1)}", "vsetrange": [0, 1], "checkingaccuracy": 0.001, "answersimplification": "std", "expectedvariablenames": [], "notallowed": {"message": "

Make sure that you input the real and imaginary parts as fractions and not as decimals

", "showStrings": false, "partialCredit": 0, "strings": ["."]}, "showpreview": true, "checkingtype": "absdiff", "scripts": {}, "checkvariablenames": false, "type": "jme", "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "variableReplacements": [], "marks": 1, "vsetrangepoints": 5}], "type": "gapfill", "showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "marks": 0}, {"prompt": "

\\[z=(\\var{z2})^4\\]
$z=\\;\\;$[[0]]

", "scripts": {}, "gaps": [{"answer": "{z2^4}", "vsetrange": [0, 1], "checkingaccuracy": 0.001, "showCorrectAnswer": true, "expectedvariablenames": [], "showpreview": true, "checkingtype": "absdiff", "scripts": {}, "checkvariablenames": false, "type": "jme", "variableReplacementStrategy": "originalfirst", "answersimplification": "std", "variableReplacements": [], "marks": 1, "vsetrangepoints": 5}], "type": "gapfill", "showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "marks": 0}, {"prompt": "

\\[z=(\\var{z3})^{\\var{-d1}}\\]
$z=\\;\\;$[[0]]

", "scripts": {}, "gaps": [{"answer": "{re(conj(z3^d1))}/{abs(z3^(2*d1))}+({im(conj(z3^d1))}/{round(abs(z3)^(2*d1))})*i", "vsetrange": [0, 1], "checkingaccuracy": 0.001, "answersimplification": "std", "expectedvariablenames": [], "notallowed": {"message": "

Make sure that you input the real and imaginary parts as fractions and not as decimals

", "showStrings": false, "partialCredit": 0, "strings": ["."]}, "showpreview": true, "checkingtype": "absdiff", "scripts": {}, "checkvariablenames": false, "type": "jme", "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "variableReplacements": [], "marks": 1, "vsetrangepoints": 5}], "type": "gapfill", "showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "marks": 0}, {"prompt": "

\\[z=i^{\\var{n}}\\]
$z=\\;\\;$[[0]]

", "scripts": {}, "gaps": [{"answer": "{i^n}", "vsetrange": [0, 1], "checkingaccuracy": 0.001, "showCorrectAnswer": true, "expectedvariablenames": [], "showpreview": true, "checkingtype": "absdiff", "scripts": {}, "checkvariablenames": false, "type": "jme", "variableReplacementStrategy": "originalfirst", "answersimplification": "std", "variableReplacements": [], "marks": 1, "vsetrangepoints": 5}], "type": "gapfill", "showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "marks": 0}], "statement": "

Express the following complex numbers $z$ in the form $a+bi$.

\n

Input $a$ and $b$ as fractions and not as decimals.

", "tags": ["addition of complex numbers", "algebra of complex numbers", "checked2015", "complex numbers", "conjugate of a complex number", "division of complex numbers", "mas1602", "MAS1602", "multiplication of complex numbers", "powers of complex numbers"], "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers", "!noLeadingMinus"]}, "preamble": {"css": "", "js": ""}, "type": "question", "metadata": {"notes": "

15/07/2015:

\n

Added tags.

\n

4/07/2012:

\n

Added tags.

\n

Question appears to be working correctly.

", "licence": "Creative Commons Attribution 4.0 International", "description": "

Direct calculation of low positive and negative powers of complex numbers. Calculations involving a complex conjugate. Powers of $i$. Four parts.

"}, "variablesTest": {"condition": "", "maxRuns": 100}, "advice": "

a)

\n

Note that for a complex number $z=a+bi$ we have:

\n

$z\\overline{z}=|z|^2=a^2+b^2$.

\n

But since $\\var{conj(z1)}=\\overline{\\var{z1}}$ we have:
\\[\\begin{eqnarray*}z&=&(\\var{z1})^{\\var{c1}}(\\var{conj(z1)})^{\\var{c1}}\\\\ &=&((\\var{z1})(\\var{conj(z1)}))^{\\var{c1}}\\\\ &=&\\simplify[]{({re(z1)}^2+{im(z1)}^2)^{c1}}\\\\ &=&\\var{(re(z1)^2+im(z1)^2)^c1} \\end{eqnarray*}\\]

\n

b)

\n

Note that $(\\var{z2})^4=((\\var{z2})^2)^2$.

\n

Since $(\\var{z2})^2=\\simplify[std]{{z2^2}}$ we have:
\\[(\\var{z2})^4=(\\simplify[std]{{z2^2}})^2=\\simplify[std]{{z2^4}}\\]

\n

c)
We have
\\[ \\begin{eqnarray*} z&=&(\\var{z3})^{\\var{-d1}}\\\\ &=&\\frac{1}{(\\var{z3})^{\\var{d1}}}\\\\ &=&\\frac{(\\var{conj(z3)})^{\\var{d1}}}{(\\var{z3})^{\\var{d1}}(\\var{conj(z3)})^{\\var{d1}}}\\\\ &=&\\frac{\\var{conj(z3)^d1}}{\\var{abs(z3)^(2*d1)}}\\\\ &=&\\simplify[std]{{re(conj(z3^d1))}/{(abs(z3)^(2*d1))}+({im(conj(z3^d1))}/{round(abs(z3)^(2*d1))})*i} \\end{eqnarray*}\\]
d)
We have $i^2=-1,\\;\\;i^3=-i,\\;\\;i^4=1$.

\n

So if $n=4m+r,\\;\\;0\\le r\\le 3$ we have \\[i^n=i^{4m+r}=(i^4)^m \\times i^r=i^r\\]
Hence since $\\var{n}=4\\times\\var{m}+\\var{rem}$ we have:
\\[i^{\\var{n}}=i^{\\var{rem}}=\\simplify{{i^rem}}\\]

", "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}]}]}], "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}]}