// Numbas version: finer_feedback_settings {"name": "Chain rule. (Video).", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {}, "name": "Chain rule. (Video).", "tags": ["Calculus", "Steps", "calculus", "chain rule", "derivative of a function of a function", "differentiation", "function of a function", "steps", "video"], "advice": "\n \n \n
$\\simplify[std]{f(x) = cos(e^({a}x) +{b}x^2+{c})}$
The chain rule says that if $f(x)=g(h(x))$ then
\\[\\simplify[std]{f'(x) = h'(x)g'(h(x))}\\]
One way to find $f'(x)$ is to let $u=h(x)$ then we have $f(u)=g(u)$ as a function of $u$.
Then we use the chain rule in the form:
\\[\\frac{df}{dx} = \\frac{du}{dx}\\frac{df(u)}{du}\\]
Once you have worked this out, you replace $u$ by $h(x)$ and your answer is now in terms of $x$.
For this example, we let $u=\\simplify[std]{e^({a}x) +{b}x^2+{c}}$ and we have $f(u)=\\simplify[std]{cos(u)}$.
This gives
\\[\\begin{eqnarray*}\\frac{du}{dx} &=& \\simplify[std]{{a}e^({a}x) +{2*b}x}\\\\\n \n \\frac{df(u)}{du} &=& \\simplify[std]{-sin(u)} \\end{eqnarray*}\\]
Hence on substituting into the chain rule above we get:
\n \n \n \n\\[\\begin{eqnarray*}\\frac{df}{dx} &=& \\simplify[std]{({a}e^({a}x) +{2*b}x) * (-sin(u))}\\\\\n \n &=& \\simplify[std]{-({a}e^({a}x) +{2*b}x)*sin(e^({a}x) +{b}x^2+{c})}\n \n \\end{eqnarray*}\\]
on replacing $u$ by $\\simplify[std]{e^({a}x) +{b}x^2+{c}}$.
\\[\\simplify[std]{f(x) = cos(e^({a}x) +{b}x^2+{c})}\\]
\n$\\displaystyle \\frac{df}{dx}=\\;$[[0]]
\nClick on Show steps for more information. You will not lose any marks by doing so.
\nYou will also find a video solving a similar example in Show steps.
", "gaps": [{"checkingaccuracy": 0.001, "vsetrange": [0.0, 1.0], "vsetrangepoints": 5.0, "checkingtype": "absdiff", "answersimplification": "std", "marks": 3.0, "answer": "-({a}e^({a}x)+{2*b}x)*sin(e^({a}x) +{b}x^2+{c})", "type": "jme"}], "steps": [{"prompt": "The chain rule says that if $f(x)=g(h(x))$ then
\\[\\simplify[std]{f'(x) = h'(x)g'(h(x))}\\]
One way to find $f'(x)$ is to let $u=h(x)$ then we have $f(u)=g(u)$ as a function of $u$.
Then we use the chain rule in the form:
\\[\\frac{df}{dx} = \\frac{du}{dx}\\frac{df}{du}\\]
Once you have worked this out, you replace $u$ by $h(x)$ and your answer is now in terms of $x$.
The following video sets out the solution for a similar example.
\n \n", "type": "information", "marks": 0.0}], "marks": 0.0, "type": "gapfill"}], "extensions": [], "statement": "
Differentiate the following function $f(x)$ using the chain rule.
\n", "variable_groups": [], "progress": "ready", "type": "question", "variables": {"a": {"definition": "random(2..9)", "name": "a"}, "s2": {"definition": "random(1,-1)", "name": "s2"}, "c": {"definition": "s2*random(1..9)", "name": "c"}, "b": {"definition": "s1*random(1..9)", "name": "b"}, "s1": {"definition": "random(1,-1)", "name": "s1"}}, "metadata": {"notes": "\n \t\t
1/08/2012:
\n \t\tAdded tags.
\n \t\tAdded description.
\n \t\tChecked calculation. OK.
\n \t\tAdded information about Show steps. Altered to 0 marks lost rather than 1.
\n \t\tGot rid of a redundant ruleset.
\n \t\tImproved display in prompt.
\n \t\t", "description": "Differentiate $\\displaystyle \\cos(e^{ax}+bx^2+c)$.
\nContains a video solving a similar example.
", "licence": "Creative Commons Attribution 4.0 International"}, "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}], "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}]}]}], "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}]}