// Numbas version: finer_feedback_settings {"name": "Multiply 2x2 matrices", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"variable_groups": [], "variables": {"b": {"templateType": "anything", "group": "Ungrouped variables", "definition": "matrix([ [random(-3,-1,0,3),random(-3..1)], [random(2,3),random(-3..-1)] ])", "description": "", "name": "b"}, "a": {"templateType": "anything", "group": "Ungrouped variables", "definition": "matrix([ [random(-2,1,2),random(1..4)], [random(-2..2),random(1..3)] ])", "description": "", "name": "a"}, "c": {"templateType": "anything", "group": "Ungrouped variables", "definition": "matrix([ [random(1,0,4), a[0][1]+b[0][1]], [random(2..5),random(0,1)] ])", "description": "", "name": "c"}}, "ungrouped_variables": ["a", "b", "c"], "question_groups": [{"pickingStrategy": "all-ordered", "questions": [], "name": "", "pickQuestions": 0}], "name": "Multiply 2x2 matrices", "functions": {}, "showQuestionGroupNames": false, "parts": [{"scripts": {}, "gaps": [{"allowFractions": false, "correctAnswer": "a*b", "markPerCell": false, "allowResize": false, "correctAnswerFractions": false, "numRows": "2", "scripts": {}, "type": "matrix", "numColumns": "2", "tolerance": 0, "showCorrectAnswer": true, "marks": 1}], "type": "gapfill", "prompt": "

$\\mathbf{AB} = \\var{A}\\var{B} = $ [[0]]

", "showCorrectAnswer": true, "marks": 0}, {"scripts": {}, "gaps": [{"allowFractions": false, "correctAnswer": "b*a", "markPerCell": false, "allowResize": false, "correctAnswerFractions": false, "numRows": "2", "scripts": {}, "type": "matrix", "numColumns": "2", "tolerance": 0, "showCorrectAnswer": true, "marks": 1}], "type": "gapfill", "prompt": "

$\\mathbf{BA} = \\var{B}\\var{A} = $ [[0]]

", "showCorrectAnswer": true, "marks": 0}, {"scripts": {}, "gaps": [{"allowFractions": false, "correctAnswer": "c*b", "markPerCell": false, "allowResize": false, "correctAnswerFractions": false, "numRows": "2", "scripts": {}, "type": "matrix", "numColumns": "2", "tolerance": 0, "showCorrectAnswer": true, "marks": 1}], "type": "gapfill", "prompt": "

$\\mathbf{CB} = \\var{C}\\var{B} = $ [[0]]

", "showCorrectAnswer": true, "marks": 0}, {"scripts": {}, "gaps": [{"allowFractions": false, "correctAnswer": "a*c", "markPerCell": false, "allowResize": false, "correctAnswerFractions": false, "numRows": "2", "scripts": {}, "type": "matrix", "numColumns": "2", "tolerance": 0, "showCorrectAnswer": true, "marks": 1}], "type": "gapfill", "prompt": "

$\\mathbf{AC} = \\var{A}\\var{C} = $ [[0]]

", "showCorrectAnswer": true, "marks": 0}], "statement": "

Let

\n

\\begin{align} \\mathbf{A} &= \\var{a}, & \\mathbf{B} &= \\var{b}, & \\mathbf{C} &= \\var{c} \\end{align}

\n

Calculate the following products of these matrices:

", "tags": ["checked2015", "MAS1602", "matrices", "matrix", "matrix multiplication", "matrix product", "multiplication of matrices", "multiplying matrices", "product of matrices", "tested1"], "rulesets": {"std": ["all", "fractionNumbers", "!collectNumbers"]}, "preamble": {"css": "", "js": ""}, "type": "question", "metadata": {"notes": "

10/07/2012:

\n

Added tags.

\n

Display of matrices looks untidy when individual components include negative numbers.

\n

Is it worthwhile restricting all components of matrices to be non zero?

\n

Question appears to be working correctly.

\n

24/12/2012:

\n

Checked calculations, OK. Added tested1 tag.

", "licence": "Creative Commons Attribution 4.0 International", "description": "

Multiplication of $2 \\times 2$ matrices.

"}, "variablesTest": {"condition": "", "maxRuns": 100}, "advice": "

a)

\n

\\begin{align}
\\mathbf{AB} &= \\var{A}\\var{B} \\\\
&= \\begin{pmatrix} \\simplify[]{ {a[0][0]}*{b[0][0]}+{a[0][1]}*{b[1][0]} } & \\simplify[]{ {a[0][0]}*{b[0][1]} + {a[0][1]}*{b[1][1]} } \\\\ \\simplify[]{ {a[1][0]}*{b[0][0]} + {a[1][1]}*{b[1][0]} } & \\simplify[]{ {a[1][0]}*{b[0][1]} + {a[1][1]}*{b[1][1]} } \\end{pmatrix} \\\\
&= \\var{a*b}
\\end{align}

\n

b)

\n

\\begin{align}
\\mathbf{BA} &= \\var{B}\\var{A} \\\\
&= \\begin{pmatrix} \\simplify[]{ {b[0][0]}*{a[0][0]}+{b[0][1]}*{a[1][0]} } & \\simplify[]{ {b[0][0]}*{a[0][1]} + {b[0][1]}*{a[1][1]} } \\\\ \\simplify[]{ {b[1][0]}*{a[0][0]} + {b[1][1]}*{a[1][0]} } & \\simplify[]{ {b[1][0]}*{a[0][1]} + {b[1][1]}*{a[1][1]} } \\end{pmatrix} \\\\
&= \\var{b*a}
\\end{align}

\n

c)

\n

\\begin{align}
\\mathbf{CB} &= \\var{C}\\var{B} \\\\
&= \\begin{pmatrix} \\simplify[]{ {c[0][0]}*{b[0][0]}+{c[0][1]}*{b[1][0]} } & \\simplify[]{ {c[0][0]}*{b[0][1]} + {c[0][1]}*{b[1][1]} } \\\\ \\simplify[]{ {c[1][0]}*{b[0][0]} + {c[1][1]}*{b[1][0]} } & \\simplify[]{ {c[1][0]}*{b[0][1]} + {c[1][1]}*{b[1][1]} } \\end{pmatrix} \\\\
&= \\var{c*b}
\\end{align}

\n

d)

\n

\\begin{align}
\\mathbf{AC} &= \\var{A}\\var{C} \\\\
&= \\begin{pmatrix} \\simplify[]{ {a[0][0]}*{c[0][0]}+{a[0][1]}*{c[1][0]} } & \\simplify[]{ {a[0][0]}*{c[0][1]} + {a[0][1]}*{c[1][1]} } \\\\ \\simplify[]{ {a[1][0]}*{c[0][0]} + {a[1][1]}*{c[1][0]} } & \\simplify[]{ {a[1][0]}*{c[0][1]} + {a[1][1]}*{c[1][1]} } \\end{pmatrix} \\\\
&= \\var{a*c}
\\end{align}

", "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}]}]}], "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}]}