// Numbas version: finer_feedback_settings {"name": "Vector equation of a line, ", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"parts": [{"customMarkingAlgorithm": "", "variableReplacementStrategy": "originalfirst", "prompt": "
Find the vector equation of Line 1 which goes through the point $\\boldsymbol{x_0}$ in the direction of the vector $\\boldsymbol{v}$.
\nInput the vector equation in the form:
\n\\[\\boldsymbol{r} = \\begin{pmatrix} a_1 \\\\ a_2 \\\\ a_3 \\end{pmatrix} + \\lambda \\begin{pmatrix} b_1 \\\\ b_2 \\\\ b_3 \\end{pmatrix} \\]
\nsuch that $\\boldsymbol{r} = \\boldsymbol{x_0}$ when $\\lambda=0$ and $\\boldsymbol{r}=\\boldsymbol{x_0}+\\boldsymbol{v}$ when $\\lambda=1$ by filling in the appropriate fields below:
\n$ \\boldsymbol{r} = $ [[0]] $ + \\lambda $ [[1]]
", "unitTests": [], "showFeedbackIcon": true, "scripts": {}, "gaps": [{"showCorrectAnswer": true, "allowFractions": true, "customMarkingAlgorithm": "", "markPerCell": false, "correctAnswer": "vector(a,b,g)", "allowResize": false, "unitTests": [], "correctAnswerFractions": false, "showFeedbackIcon": true, "scripts": {}, "extendBaseMarkingAlgorithm": true, "type": "matrix", "numColumns": 1, "tolerance": 0, "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "marks": "0.75", "numRows": "3"}, {"showCorrectAnswer": true, "allowFractions": true, "customMarkingAlgorithm": "", "markPerCell": false, "correctAnswer": "vector(c,d,f)", "allowResize": false, "unitTests": [], "correctAnswerFractions": false, "showFeedbackIcon": true, "scripts": {}, "extendBaseMarkingAlgorithm": true, "type": "matrix", "numColumns": 1, "tolerance": 0, "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "marks": "0.75", "numRows": "3"}], "type": "gapfill", "extendBaseMarkingAlgorithm": true, "showCorrectAnswer": true, "variableReplacements": [], "marks": 0, "sortAnswers": false}, {"customMarkingAlgorithm": "", "variableReplacementStrategy": "originalfirst", "prompt": "Once again find the vector equation of Line 2 which goes through the point $\\boldsymbol{y_0}$ in the direction of the vector $\\boldsymbol{w}$ in the form
\n\\[ \\boldsymbol{r} = \\begin{pmatrix} c_1 \\\\ c_2 \\\\ c_3 \\end{pmatrix} + \\mu \\begin{pmatrix} d_1 \\\\ d_2 \\\\ d_3 \\end{pmatrix} \\]
\nsuch that $\\boldsymbol{r}=\\boldsymbol{C}$ when $\\mu=0$ and $\\boldsymbol{r=C+D}$ when $\\mu=1$ by filling in the appropriate fields below:
\n$ \\boldsymbol{r} = $ [[0]] $ + \\mu $ [[1]]
", "unitTests": [], "showFeedbackIcon": true, "scripts": {}, "gaps": [{"showCorrectAnswer": true, "allowFractions": true, "customMarkingAlgorithm": "", "markPerCell": false, "correctAnswer": "vector(a1,b1,g1)", "allowResize": false, "unitTests": [], "correctAnswerFractions": false, "showFeedbackIcon": true, "scripts": {}, "extendBaseMarkingAlgorithm": true, "type": "matrix", "numColumns": 1, "tolerance": 0, "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "marks": "0.75", "numRows": "3"}, {"showCorrectAnswer": true, "allowFractions": true, "customMarkingAlgorithm": "", "markPerCell": false, "correctAnswer": "vector(c1,d1,f1)", "allowResize": false, "unitTests": [], "correctAnswerFractions": false, "showFeedbackIcon": true, "scripts": {}, "extendBaseMarkingAlgorithm": true, "type": "matrix", "numColumns": 1, "tolerance": 0, "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "marks": "0.75", "numRows": "3"}], "type": "gapfill", "extendBaseMarkingAlgorithm": true, "showCorrectAnswer": true, "variableReplacements": [], "marks": 0, "sortAnswers": false}, {"customMarkingAlgorithm": "", "variableReplacementStrategy": "originalfirst", "prompt": "You are told that Line 1 and Line 2 intersect in a point $\\boldsymbol{P}$.
\nFind $\\boldsymbol{P}$.
\n$\\boldsymbol{P} = $ [[0]]
", "unitTests": [], "showFeedbackIcon": true, "scripts": {}, "gaps": [{"showCorrectAnswer": true, "allowFractions": true, "customMarkingAlgorithm": "", "markPerCell": false, "correctAnswer": "p", "allowResize": false, "unitTests": [], "correctAnswerFractions": false, "showFeedbackIcon": true, "scripts": {}, "extendBaseMarkingAlgorithm": true, "type": "matrix", "numColumns": 1, "tolerance": 0, "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "marks": "3", "numRows": "3"}], "type": "gapfill", "extendBaseMarkingAlgorithm": true, "showCorrectAnswer": true, "variableReplacements": [], "marks": 0, "sortAnswers": false}], "variables": {"w": {"group": "Ungrouped variables", "templateType": "anything", "definition": "matrix([c,d,f])", "name": "w", "description": ""}, "s1": {"group": "Ungrouped variables", "templateType": "anything", "definition": "random(1,-1)", "name": "s1", "description": ""}, "v": {"group": "Ungrouped variables", "templateType": "anything", "definition": "matrix([a,b,g])", "name": "v", "description": ""}, "b": {"group": "Ungrouped variables", "templateType": "anything", "definition": "s2*random(2..9)", "name": "b", "description": ""}, "f1": {"group": "Ungrouped variables", "templateType": "anything", "definition": "ga", "name": "f1", "description": ""}, "s4": {"group": "Ungrouped variables", "templateType": "anything", "definition": "random(1,-1)", "name": "s4", "description": ""}, "s2": {"group": "Ungrouped variables", "templateType": "anything", "definition": "random(1,-1)", "name": "s2", "description": ""}, "a1": {"group": "Ungrouped variables", "templateType": "anything", "definition": "a+lam*c-mu*al", "name": "a1", "description": ""}, "mu": {"group": "Ungrouped variables", "templateType": "anything", "definition": "s2*random(1..5)", "name": "mu", "description": ""}, "be": {"group": "Ungrouped variables", "templateType": "anything", "definition": "random(-5..5)", "name": "be", "description": ""}, "a": {"group": "Ungrouped variables", "templateType": "anything", "definition": "s1*random(2..9)", "name": "a", "description": ""}, "p": {"group": "Ungrouped variables", "templateType": "anything", "definition": "vector(a,b,g)+lam*vector(c,d,f)", "name": "p", "description": "Point of intersection of the two lines
"}, "c": {"group": "Ungrouped variables", "templateType": "anything", "definition": "s3*random(2..9)", "name": "c", "description": ""}, "g1": {"group": "Ungrouped variables", "templateType": "anything", "definition": "g+lam*f-mu*ga", "name": "g1", "description": ""}, "lam": {"group": "Ungrouped variables", "templateType": "anything", "definition": "s3*random(1..5)", "name": "lam", "description": ""}, "d": {"group": "Ungrouped variables", "templateType": "anything", "definition": "s4*random(2..9)", "name": "d", "description": ""}, "f": {"group": "Ungrouped variables", "templateType": "anything", "definition": "random(2..9)", "name": "f", "description": ""}, "b1": {"group": "Ungrouped variables", "templateType": "anything", "definition": "b+lam*d-mu*be", "name": "b1", "description": ""}, "al": {"group": "Ungrouped variables", "templateType": "anything", "definition": "random(-5..5)", "name": "al", "description": ""}, "d1": {"group": "Ungrouped variables", "templateType": "anything", "definition": "be", "name": "d1", "description": ""}, "c1": {"group": "Ungrouped variables", "templateType": "anything", "definition": "al", "name": "c1", "description": ""}, "ga": {"group": "Ungrouped variables", "templateType": "anything", "definition": "random(-5..5)", "name": "ga", "description": ""}, "s3": {"group": "Ungrouped variables", "templateType": "anything", "definition": "random(1,-1)", "name": "s3", "description": ""}, "g": {"group": "Ungrouped variables", "templateType": "anything", "definition": "s1*random(2..9)", "name": "g", "description": ""}}, "ungrouped_variables": ["a", "a1", "al", "b", "b1", "be", "c", "c1", "d", "d1", "f", "f1", "g", "g1", "ga", "lam", "mu", "s1", "s2", "s3", "s4", "v", "w", "p"], "name": "Vector equation of a line, ", "functions": {}, "variable_groups": [], "variablesTest": {"condition": "", "maxRuns": 100}, "statement": "You are given the vectors
\n\\begin{align}
\\boldsymbol{x_0} &= \\var{vector(a,b,g)} , & \\boldsymbol{v} & = \\var{vector(c,d,f)}, \\\\[1em]
\\boldsymbol{y_0} &= \\var{vector(a1,b1,g1)}, & \\boldsymbol{w} &=\\var{vector(c1,d1,f1)}
\\end{align}
in $\\mathbb{R^3}$.
", "tags": ["checked2015", "equation of a line", "equation of a line through a vector in the direction of another vector", "Finding a common point for two lines in three dimensional space", "intersection of two lines in three dimensional space", "lines in three dimensional space", "three dimensional geometry", "vector equation of a line", "vectors"], "rulesets": {"std": ["all", "fractionNumbers", "!collectNumbers", "!noLeadingMinus"]}, "preamble": {"css": "", "js": ""}, "type": "question", "extensions": [], "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "Given two 3 dim vectors, find vector equation of line through one vector in the direction of another. Find two such lines and their point of intersection.
"}, "advice": "\\[\\boldsymbol{r} = \\var{vector(a,b,g)} + \\lambda \\var{vector(c,d,f)}\\]
\n\\[\\boldsymbol{r} = \\var{vector(a1,b1,g1)} + \\mu \\var{vector(c1,d1,f1)}\\]
\nWrite out a set of simultaneous equations for each component of $\\boldsymbol{P}$:
\n\\begin{align}
\\simplify[]{{a} + lambda*{c}} &= \\simplify[]{{a1} + mu*{c1}} \\\\
\\simplify[]{{b} + lambda*{d}} &= \\simplify[]{{b1} + mu*{d1}} \\\\
\\simplify[]{{g} + lambda*{f}} &= \\simplify[]{{g1} + mu*{f1}}
\\end{align}
By solving these equations, we find that the point $\\boldsymbol{P}$ common to both lines is given by $\\lambda=\\var{lam},\\mu=\\var{mu}$, and
\n\\[\\boldsymbol{P} = \\var{p}\\]
", "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}, {"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}]}]}], "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}, {"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}]}