// Numbas version: finer_feedback_settings {"name": "Quantifiers 4--AJD", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"variable_groups": [], "variables": {"Prop_const": {"templateType": "anything", "group": "Ungrouped variables", "definition": "[random(Qchoice),random(Qchoice),random(Qchoice),random(Achoice),random(Bchoice),random(Cchoice)]", "description": "", "name": "Prop_const"}, "wrong_flags": {"templateType": "anything", "group": "Ungrouped variables", "definition": "shuffle([shuffle([0,1,1,1,1]),shuffle([0,0,1,1,1]),shuffle([0,0,0,1,1]),shuffle([0,0,0,0,1])])[0..4]", "description": "", "name": "wrong_flags"}, "prop2": {"templateType": "anything", "group": "Ungrouped variables", "definition": "[random(Achoice),random(Bchoice)]", "description": "", "name": "prop2"}, "Cchoice": {"templateType": "anything", "group": "Ungrouped variables", "definition": "[[\"\\\\rightarrow\",\"\\\\land\"],\n [\"\\\\land\",\"\\\\rightarrow\"]\n ]", "description": "", "name": "Cchoice"}, "Achoice": {"templateType": "anything", "group": "Ungrouped variables", "definition": "[\n[\"c \\\\ge b\"],\n[\"c < b\"],\n[\"c = b\"],\n[\"c \\\\neq b\"],\n[\"2c\\\\le b\"],\n[\"c\\\\ge b+1\"],\n[\"c < b+1\"],\n[\"2c > b\"]\n]", "description": "", "name": "Achoice"}, "Qchoice": {"templateType": "anything", "group": "Ungrouped variables", "definition": "[\n [\"\\\\forall\",\"\\\\exists\"],\n [\"\\\\exists\",\"\\\\forall\"]\n]", "description": "", "name": "Qchoice"}, "Bchoice": {"templateType": "anything", "group": "Ungrouped variables", "definition": "[\n[\"|(-1)\\^c| < a\",\"|(-1)\\^c| \\\\ge a\"],\n[\"\\\\left|\\\\sqrt\\{\\\\left(1-\\\\frac\\{1\\}\\{c\\}\\\\right)\\}-1\\\\right| < a\",\"a \\\\leq \\\\left| \\\\sqrt\\{\\\\left(1-\\\\frac\\{1\\}\\{c\\}\\\\right)\\}-1 \\\\right|\"],\n[\"\\\\frac\\{1\\}\\{2\\^c\\} < 3a\",\"\\\\frac\\{1\\}\\{2\\^c\\} \\\\ge 3a\"],\n[\"\\\\frac\\{c\\^2-2\\}\\{2c+3\\} > 3a+6\",\"\\\\frac\\{c\\^2-2\\}\\{2c+3\\} \\\\le 3a+6\"],\n[\"\\\\left|\\\\frac\\{1\\}\\{c\\^3\\}\\\\right| < a\",\"\\\\left|\\\\frac\\{1\\}\\{c\\^3\\}\\\\right| \\\\ge a\"],\n[\"\\\\frac\\{c\\^2+6\\}\\{2c\\^2+1\\} < a\",\"\\\\frac\\{c\\^2+6\\}\\{2c\\^2+1\\} \\\\ge a\"]\n]\n", "description": "", "name": "Bchoice"}}, "ungrouped_variables": ["Prop_const", "Cchoice", "Achoice", "Qchoice", "Bchoice", "wrong_flags", "prop2"], "question_groups": [{"pickingStrategy": "all-ordered", "questions": [], "name": "", "pickQuestions": 0}], "name": "Quantifiers 4--AJD", "functions": {}, "showQuestionGroupNames": false, "parts": [{"displayType": "radiogroup", "choices": ["

\n

$\\displaystyle  \\var{latex(Prop_const[0][1])} a \\in \\mathbb{R}^+, \\var{latex(Prop_const[1][1])} b \\in \\mathbb{N}, \\var{latex(Prop_const[2][1])} c \\in \\mathbb{N}\\,\\left[(\\var{latex(Prop_const[3][0])})\\, \\var{latex(Prop_const[5][1])}\\, \\left(\\var{latex(Prop_const[4][1])}\\right)\\right]$

", "

$\\displaystyle  \\var{latex(Prop_const[0][wrong_flags[0][0]])} a \\in \\mathbb{R}^+, \\var{latex(Prop_const[1][wrong_flags[0][1]])} b \\in \\mathbb{N}, \\var{latex(Prop_const[2][wrong_flags[0][2]])} c \\in \\mathbb{N}\\,\\left[(\\var{latex(Prop_const[3][0])})\\, \\var{latex(Prop_const[5][wrong_flags[0][3]])}\\, \\left(\\var{latex(Prop_const[4][wrong_flags[0][4]])}\\right)\\right]$

", "

$\\displaystyle \\var{latex(Prop_const[0][wrong_flags[1][0]])} a \\in \\mathbb{R}^+, \\var{latex(Prop_const[1][wrong_flags[1][1]])} b \\in \\mathbb{N}, \\var{latex(Prop_const[2][wrong_flags[1][2]])} c \\in \\mathbb{N}\\,\\left[(\\var{latex(Prop_const[3][0])})\\, \\var{latex(Prop_const[5][wrong_flags[1][3]])}\\, \\left(\\var{latex(Prop_const[4][wrong_flags[1][4]])}\\right)\\right]$

", "

 $\\displaystyle  \\var{latex(Prop_const[0][wrong_flags[2][0]])} a \\in \\mathbb{R}^+, \\var{latex(Prop_const[1][wrong_flags[2][1]])} b \\in \\mathbb{N}, \\var{latex(Prop_const[2][wrong_flags[2][2]])} c \\in \\mathbb{N}\\,\\left[(\\var{latex(Prop_const[3][0])})\\, \\var{latex(Prop_const[5][wrong_flags[2][3]])}\\, \\left(\\var{latex(Prop_const[4][wrong_flags[2][4]])}\\right)\\right]$

"], "showCorrectAnswer": true, "displayColumns": "1", "prompt": "

Choose the negation of   \\[\\var{latex(Prop_const[0][0])} a \\in \\mathbb{R}^+, \\var{latex(Prop_const[1][0])} b \\in \\mathbb{N}, \\var{latex(Prop_const[2][0])} c \\in \\mathbb{N}\\,\\left[(\\var{latex(Prop_const[3][0])})\\, \\var{latex(Prop_const[5][0])}\\, \\left(\\var{latex(Prop_const[4][0])}\\right)\\right]\\]

\n

from the list below

", "distractors": ["", "", "", ""], "variableReplacements": [], "shuffleChoices": true, "scripts": {}, "minMarks": 0, "type": "1_n_2", "maxMarks": "4", "variableReplacementStrategy": "originalfirst", "matrix": ["4", 0, 0, 0], "marks": 0}, {"displayType": "radiogroup", "choices": ["

$\\displaystyle \\var{latex(Prop_const[0][0])} a \\in \\mathbb{R}^+, \\var{latex(Prop_const[1][1])} b \\in \\mathbb{N}, \\var{latex(Prop_const[2][0])} c \\in \\mathbb{N}\\,\\left[(\\var{latex(prop2[0][0])})\\, \\var{latex(Prop_const[5][0])}\\, \\left(\\var{latex(prop2[1][0])}\\right)\\right]$

", "

$\\displaystyle  \\var{latex(Prop_const[0][1-wrong_flags[1][0]])} a \\in \\mathbb{R}^+, \\var{latex(Prop_const[1][wrong_flags[1][1]])} b \\in \\mathbb{N}, \\var{latex(Prop_const[2][1-wrong_flags[1][2]])} c \\in \\mathbb{N}\\,\\left[(\\var{latex(prop2[0][0])})\\, \\var{latex(Prop_const[5][1-wrong_flags[1][3]])}\\, \\left(\\var{latex(prop2[1][1-wrong_flags[1][4]])}\\right)\\right]$

\n

", "

$\\displaystyle  \\var{latex(Prop_const[0][1-wrong_flags[2][0]])} a \\in \\mathbb{R}^+, \\var{latex(Prop_const[1][wrong_flags[2][1]])} b \\in \\mathbb{N}, \\var{latex(Prop_const[2][1-wrong_flags[2][2]])} c \\in \\mathbb{N}\\,\\left[(\\var{latex(prop2[0][0])})\\, \\var{latex(Prop_const[5][1-wrong_flags[2][3]])}\\, \\left(\\var{latex(prop2[1][1-wrong_flags[2][4]])}\\right)\\right]$

\n

", "

$\\displaystyle  \\var{latex(Prop_const[0][1-wrong_flags[3][0]])} a \\in \\mathbb{R}^+, \\var{latex(Prop_const[1][wrong_flags[3][1]])} b \\in \\mathbb{N}, \\var{latex(Prop_const[2][1-wrong_flags[3][2]])} c \\in \\mathbb{N}\\,\\left[(\\var{latex(prop2[0][0])})\\, \\var{latex(Prop_const[5][1-wrong_flags[3][3]])}\\, \\left(\\var{latex(prop2[1][1-wrong_flags[3][4]])}\\right)\\right]$

"], "showCorrectAnswer": true, "displayColumns": "1", "prompt": "

Choose the negation of 

\n

\\[\\var{latex(Prop_const[0][1])} a \\in \\mathbb{R}^+, \\var{latex(Prop_const[1][0])} b \\in \\mathbb{N}, \\var{latex(Prop_const[2][1])} c \\in \\mathbb{N}\\,\\left[(\\var{latex(prop2[0][0])})\\, \\var{latex(Prop_const[5][1])}\\, \\left(\\var{latex(prop2[1][1])}\\right)\\right]\\]

\n

from the list below

", "distractors": ["", "", "", ""], "variableReplacements": [], "shuffleChoices": true, "scripts": {}, "minMarks": 0, "type": "1_n_2", "maxMarks": "4", "variableReplacementStrategy": "originalfirst", "matrix": ["4", 0, 0, 0], "marks": 0}], "statement": "

\n

\n

", "tags": ["exists", "for all", "logic", "logical expressions", "negation of logical expressions", "negation of quantifiers", "predicates", "quantifiers"], "rulesets": {}, "preamble": {"css": "", "js": ""}, "type": "question", "metadata": {"notes": "", "licence": "Creative Commons Attribution 4.0 International", "description": "

Given two propositions in mathematics using quantifiers, choose the corresponding negation of the proposition. For example, the negation of: $\\displaystyle \\exists a \\in \\mathbb{R^+},\\;\\exists b \\in \\mathbb{N},\\;\\exists c \\in \\mathbb{N}\\;\\left[(c \\lt b+1) \\land \\left(\\frac{1}{2^n} \\geq 3a\\right)\\right]$

"}, "variablesTest": {"condition": "", "maxRuns": 100}, "advice": "", "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}]}]}], "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}]}