// Numbas version: finer_feedback_settings {"name": "Quantifiers1-", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"variable_groups": [{"variables": ["marking_matrix", "select"], "name": "Part 0"}, {"variables": ["select1", "marking_matrix1"], "name": "Part 1"}, {"variables": ["select2", "marking_matrix2"], "name": "Part 2"}], "variables": {"neg_marks": {"group": "Ungrouped variables", "templateType": "anything", "definition": "2*id(3)+matrix(map(map(-1,x,0..2),y,0..2))", "name": "neg_marks", "description": ""}, "marking_matrix1": {"group": "Part 1", "templateType": "anything", "definition": "map(list(neg_marks[x])+[all[select1[x]][2]]+[-1*all[select1[x]][2]],x,0..2)", "name": "marking_matrix1", "description": ""}, "marking_matrix": {"group": "Part 0", "templateType": "anything", "definition": "map(list(neg_marks[x])+[all[select[x]][2]]+[-1*all[select[x]][2]],x,0..2)", "name": "marking_matrix", "description": ""}, "select1": {"group": "Part 1", "templateType": "anything", "definition": "list(set(0..length(all)-1)-set(select))[0..3]", "name": "select1", "description": ""}, "select": {"group": "Part 0", "templateType": "anything", "definition": "shuffle(list(0..length(all)-1))[0..3]", "name": "select", "description": ""}, "all": {"group": "Ungrouped variables", "templateType": "anything", "definition": "[['The square of any real number is greater than $0$.',\n '$\\\\forall x \\\\in \\\\mathbb{R}\\\\;(x^2\\\\gt 0).$',-1],\n ['Given a real number then some integral power is not negative.',\n '$\\\\forall x \\\\in \\\\mathbb{R} \\\\;\\\\exists n \\\\in \\\\mathbb{N}\\\\;(x^n\\\\geq 0).$',1],\n ['A subset of the natural numbers is a subset of the reals.',\n '$\\\\forall X \\\\subseteq \\\\mathbb{N}\\\\;(X\\\\subseteq \\\\mathbb{R}).$',1],\n ['For every natural number $n$ there is a subset of $\\\\mathbb{N}$ with less than $n$ members.',\n '$\\\\forall n \\\\in \\\\mathbb{N}\\\\;\\\\exists X \\\\subseteq \\\\mathbb{N}\\\\;(|X|\\\\lt n).$',1],\n ['All subsets of the natural numbers have less than a fixed number of elements.',\n '$\\\\exists n \\\\in \\\\mathbb{N}\\\\; \\\\forall X \\\\subseteq \\\\mathbb{N}\\\\;(|X|\\\\lt n).$',-1],\n ['All subsets of the natural numbers are finite.',\n '$\\\\forall X \\\\subseteq \\\\mathbb{N}\\\\;\\\\exists n \\\\in \\\\mathbb{Z}\\\\;(|X|=n).$',-1],\n ['Given an integer $n$, there is a subset of the natural numbers with $n$ elements.',\n '$\\\\forall n \\\\in \\\\mathbb{Z}\\\\;\\\\exists X \\\\subseteq \\\\mathbb{N}\\\\;(|X|=n).$',-1],\n ['Given an integer, then adding $5$ to it gives another integer.',\n '$\\\\forall n \\\\in \\\\mathbb{Z}\\\\; \\\\exists m \\\\in \\\\mathbb{Z}\\\\; (m=n+5).$',1],\n ['There is an integer $t$ such that adding $5$ to any integer gives $t$.',\n '$\\\\exists m \\\\in \\\\mathbb{Z}\\\\; \\\\forall n \\\\in \\\\mathbb{Z}\\\\; (m=n+5).$',-1]\n ]", "name": "all", "description": ""}, "select2": {"group": "Part 2", "templateType": "anything", "definition": "list(set(0..length(all)-1)-(set(select) or set(select1)))", "name": "select2", "description": ""}, "marking_matrix2": {"group": "Part 2", "templateType": "anything", "definition": "map(list(neg_marks[x])+[all[select2[x]][2]]+[-1*all[select2[x]][2]],x,0..2)", "name": "marking_matrix2", "description": ""}}, "ungrouped_variables": ["all", "neg_marks"], "rulesets": {}, "name": "Quantifiers1-", "showQuestionGroupNames": false, "functions": {}, "parts": [{"displayType": "checkbox", "layout": {"type": "all", "expression": ""}, "choices": ["{all[select[0]][0]}", "{all[select[1]][0]}", "{all[select[2]][0]}"], "showCorrectAnswer": true, "matrix": "marking_matrix", "minAnswers": "6", "maxAnswers": "6", "shuffleChoices": true, "warningType": "warn", "scripts": {}, "minMarks": 0, "type": "m_n_x", "maxMarks": 0, "shuffleAnswers": false, "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "marks": 0, "answers": ["{all[select[0]][1]}", "{all[select[1]][1]}", "{all[select[2]][1]}", "True", "False"]}, {"displayType": "checkbox", "layout": {"type": "all", "expression": ""}, "choices": ["{all[select1[0]][0]}", "{all[select1[1]][0]}", "{all[select1[2]][0]}"], "showCorrectAnswer": true, "matrix": "marking_matrix1", "minAnswers": "6", "maxAnswers": "6", "shuffleChoices": true, "warningType": "warn", "scripts": {}, "minMarks": 0, "type": "m_n_x", "maxMarks": 0, "shuffleAnswers": false, "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "marks": 0, "answers": ["{all[select1[0]][1]}", "{all[select1[1]][1]}", "{all[select1[2]][1]}", "True", "False"]}, {"displayType": "checkbox", "layout": {"type": "all", "expression": ""}, "choices": ["{all[select2[0]][0]}", "{all[select2[1]][0]}", "{all[select2[2]][0]}"], "showCorrectAnswer": true, "matrix": "marking_matrix2", "minAnswers": "6", "maxAnswers": "6", "shuffleChoices": true, "warningType": "warn", "scripts": {}, "minMarks": 0, "type": "m_n_x", "maxMarks": 0, "shuffleAnswers": false, "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "marks": 0, "answers": ["{all[select2[0]][1]}", "{all[select2[1]][1]}", "{all[select2[2]][1]}", "True", "False"]}], "variablesTest": {"condition": "", "maxRuns": 100}, "statement": "

Choose the appropriate proposition  for the following English sentences. Also choose whether they are true or false.

\n

You must make $2$ choices in each row, one of which is to determine whether the proposition  is true or false.

\n

Note also that every wrong answer takes away one from your score. However, your minimum score is $0$.

", "tags": ["logic", "quantifiers", "statements"], "question_groups": [{"pickingStrategy": "all-ordered", "questions": [], "name": "", "pickQuestions": 0}], "preamble": {"css": "", "js": ""}, "type": "question", "metadata": {"notes": "", "licence": "Creative Commons Attribution 4.0 International", "description": "

English sentences are given and for each the appropriate proposition involving quantifiers is to be chosen. Also choose whether the propositions are true or false.

"}, "advice": "", "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}]}]}], "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}]}