// Numbas version: finer_feedback_settings {"name": "2012 2013 CBA3_2", "extensions": ["stats"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"variablesTest": {"condition": "", "maxRuns": 100}, "variables": {"z": {"group": "Ungrouped variables", "templateType": "anything", "definition": "switch(per=95,1.96,per=99,2.58,3.29)", "name": "z", "description": ""}, "tol": {"group": "Ungrouped variables", "templateType": "anything", "definition": "0.01", "name": "tol", "description": ""}, "n": {"group": "Ungrouped variables", "templateType": "anything", "definition": "random(25..100#5)", "name": "n", "description": ""}, "mu": {"group": "Ungrouped variables", "templateType": "anything", "definition": "random(15..25)", "name": "mu", "description": ""}, "ulim": {"group": "Ungrouped variables", "templateType": "anything", "definition": "precround(tulim,2)", "name": "ulim", "description": ""}, "inf": {"group": "Ungrouped variables", "templateType": "anything", "definition": "precround(n/r11,2)", "name": "inf", "description": ""}, "llim": {"group": "Ungrouped variables", "templateType": "anything", "definition": "precround(tllim,2)", "name": "llim", "description": ""}, "tulim": {"group": "Ungrouped variables", "templateType": "anything", "definition": "r11+z*sqrt(r11/n)", "name": "tulim", "description": ""}, "tllim": {"group": "Ungrouped variables", "templateType": "anything", "definition": "r11-z*sqrt(r11/n)", "name": "tllim", "description": ""}, "r11": {"group": "Ungrouped variables", "templateType": "anything", "definition": "precround(mean(repeat(poissonsample(mu),n)),1)", "name": "r11", "description": ""}, "per": {"group": "Ungrouped variables", "templateType": "anything", "definition": "random(95,99,99.9)", "name": "per", "description": ""}}, "ungrouped_variables": ["r11", "tulim", "per", "n", "mu", "tol", "ulim", "inf", "z", "llim", "tllim"], "rulesets": {}, "name": "2012 2013 CBA3_2", "showQuestionGroupNames": false, "variable_groups": [], "parts": [{"scripts": {}, "gaps": [{"correctAnswerFraction": false, "showPrecisionHint": false, "allowFractions": false, "scripts": {}, "type": "numberentry", "showCorrectAnswer": true, "minValue": "r11", "maxValue": "r11", "marks": 1}], "type": "gapfill", "prompt": "\n
Enter the m.l.e. $\\hat{\\mu}$ for $\\mu$ here:
\n$\\hat{\\mu}=\\;$?[[0]]
\n ", "showCorrectAnswer": true, "marks": 0}, {"scripts": {}, "gaps": [{"correctAnswerFraction": false, "showPrecisionHint": false, "allowFractions": false, "scripts": {}, "type": "numberentry", "showCorrectAnswer": true, "minValue": "inf-tol", "maxValue": "inf+tol", "marks": 1}], "type": "gapfill", "prompt": "\nCalculate the expected information $I(\\mu)$:
\n$I(\\mu)=\\;$[[0]] (to 2 decimal places).
\n ", "showCorrectAnswer": true, "marks": 0}, {"scripts": {}, "gaps": [{"correctAnswerFraction": false, "showPrecisionHint": false, "allowFractions": false, "scripts": {}, "type": "numberentry", "showCorrectAnswer": true, "minValue": "llim-tol", "maxValue": "llim+tol", "marks": 1}, {"correctAnswerFraction": false, "showPrecisionHint": false, "allowFractions": false, "scripts": {}, "type": "numberentry", "showCorrectAnswer": true, "minValue": "ulim-tol", "maxValue": "ulim+tol", "marks": 1}], "type": "gapfill", "prompt": "\nCalculate a $\\var{per}$% confidence $(a,b)$ interval for $\\mu$:
\n$a=\\;$[[0]]
\n$b=\\;$[[1]]
\n ", "showCorrectAnswer": true, "marks": 0}], "statement": "$X_1,\\;X_2,\\;\\dots, X_n$ is a random sample from $\\operatorname{Poisson}(\\mu)$.
\nLet $\\bar{x}$ denote the mean of this sample and for this exercise we have $n=\\var{n},\\; \\bar{x}=\\var{r11}$
", "tags": ["MAS2302", "MLE", "Normal distribution", "checked2015", "confidence interval", "expected information", "maximum likelihood estimator", "mean ", "mle", "normal distribution", "random sample", "sample mean"], "question_groups": [{"pickingStrategy": "all-ordered", "questions": [], "name": "", "pickQuestions": 0}], "preamble": {"css": "", "js": ""}, "type": "question", "metadata": {"notes": "\n \t\t27/01/2013:
\n \t\tFirst draft completed.
\n \t\t", "licence": "Creative Commons Attribution 4.0 International", "description": "For a sample of size n from a Poisson distribution $\\operatorname{Poisson}(\\lambda)$ and given the mean of the sample, find the MLE for $\\lambda$. Also find the expected information and a confidence interval for $\\lambda$.
"}, "functions": {}, "advice": "a)
\nThe maximum likelihood estimator (m.l.e) for $\\mu$ is the sample mean i.e. $\\hat{\\mu}=\\var{r11}$.
\nb)
\nThe expected information in this case is $\\displaystyle \\frac{n}{\\bar{x}}$.
\nHence $\\displaystyle I(\\mu)=\\frac{\\var{n}}{\\var{r11}}=\\var{inf}$ to 2 decimal places.
\nc)
\nThe $\\var{per}$% confidence interval for $\\mu$ in this case is given by $(a,b)$ where:
\n\\[a=\\bar{x}-z\\sqrt{\\frac{\\bar{x}}{n}},\\;\\;b=\\bar{x}+z\\sqrt{\\frac{\\bar{x}}{n}},\\;\\;\\;z=\\var{z}\\]
\nCalculating to 2 decimal places gives:
\n$a=\\var{llim},\\;\\;\\;b=\\var{ulim}$.
\nHence a $\\var{per}$% confidence interval for $\\mu$ is given by $(\\var{llim},\\var{ulim})$.
", "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}]}]}], "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}]}