// Numbas version: finer_feedback_settings {"name": "Bivariate continuous distribution - marginals and conditional probability, ", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"variable_groups": [], "variables": {"x1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "min(a+random(1..4),a+b-1)", "description": "", "name": "x1"}, "b": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(2..5)", "description": "", "name": "b"}, "c": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1..5)", "description": "", "name": "c"}, "y1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "min(c+random(1..4),c+d-1)", "description": "", "name": "y1"}, "d": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(2..5)", "description": "", "name": "d"}, "a": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1..5)", "description": "", "name": "a"}}, "ungrouped_variables": ["a", "c", "b", "d", "y1", "x1"], "question_groups": [{"pickingStrategy": "all-ordered", "questions": [], "name": "", "pickQuestions": 0}], "name": "Bivariate continuous distribution - marginals and conditional probability, ", "functions": {}, "showQuestionGroupNames": false, "parts": [{"scripts": {}, "gaps": [{"showCorrectAnswer": true, "allowFractions": false, "scripts": {}, "type": "numberentry", "maxValue": "{c}", "minValue": "{c}", "correctAnswerFraction": false, "marks": 0.5, "showPrecisionHint": false}, {"showCorrectAnswer": true, "allowFractions": false, "scripts": {}, "type": "numberentry", "maxValue": "{c+d}", "minValue": "{c+d}", "correctAnswerFraction": false, "marks": 0.5, "showPrecisionHint": false}, {"showCorrectAnswer": true, "allowFractions": false, "scripts": {}, "type": "numberentry", "maxValue": "{x1}", "minValue": "{x1}", "correctAnswerFraction": false, "marks": 0.5, "showPrecisionHint": false}, {"showCorrectAnswer": true, "allowFractions": false, "scripts": {}, "type": "numberentry", "maxValue": "{a+b}", "minValue": "{a+b}", "correctAnswerFraction": false, "marks": 0.5, "showPrecisionHint": false}], "type": "gapfill", "prompt": "

The probability $P(X \\ge \\var{x1})$ is given by:

\n

\\[P(X\\ge \\var{x1})= \\int_a^b \\int_c^d f(x,y)dxdy\\]

\n

Input the limits of integration here:

\n

$a=\\;$?[[0]]      $b=\\;$?[[1]]   

\n

$c=\\;$?[[2]]      $d=\\;$?[[3]]   

", "showCorrectAnswer": true, "marks": 0}, {"scripts": {}, "gaps": [{"showCorrectAnswer": true, "allowFractions": false, "scripts": {}, "type": "numberentry", "maxValue": "{c}", "minValue": "{c}", "correctAnswerFraction": false, "marks": 0.5, "showPrecisionHint": false}, {"showCorrectAnswer": true, "allowFractions": false, "scripts": {}, "type": "numberentry", "maxValue": "{c+d}", "minValue": "{c+d}", "correctAnswerFraction": false, "marks": 0.5, "showPrecisionHint": false}, {"showCorrectAnswer": true, "allowFractions": false, "scripts": {}, "type": "numberentry", "maxValue": "{a}", "minValue": "{a}", "correctAnswerFraction": false, "marks": 0.5, "showPrecisionHint": false}, {"showCorrectAnswer": true, "allowFractions": false, "scripts": {}, "type": "numberentry", "maxValue": "{a+b}", "minValue": "{a+b}", "correctAnswerFraction": false, "marks": 0.5, "showPrecisionHint": false}], "type": "gapfill", "prompt": "
The marginal $f_X(x)$ of $X$ is calculated as follows:
\n

\\[f_X(x)=\\int_p^qf(x,y)dy\\]

\n

Input the limits of integration here:

\n

$p=\\;$?[[0]]   $q=\\;$?[[1]]

\n

Also input the range of values of $x,\\;x_1 \\le x \\le x_2$ on which $f_X(x)$ is defined.

\n

$x_1=\\;$?[[2]]   $x_2=\\;$?[[3]]

", "showCorrectAnswer": true, "marks": 0}, {"scripts": {}, "gaps": [{"showCorrectAnswer": true, "allowFractions": false, "scripts": {}, "type": "numberentry", "maxValue": "{a}", "minValue": "{a}", "correctAnswerFraction": false, "marks": 0.5, "showPrecisionHint": false}, {"showCorrectAnswer": true, "allowFractions": false, "scripts": {}, "type": "numberentry", "maxValue": "{a+b}", "minValue": "{a+b}", "correctAnswerFraction": false, "marks": 0.5, "showPrecisionHint": false}, {"showCorrectAnswer": true, "allowFractions": false, "scripts": {}, "type": "numberentry", "maxValue": "{c}", "minValue": "{c}", "correctAnswerFraction": false, "marks": 0.5, "showPrecisionHint": false}, {"showCorrectAnswer": true, "allowFractions": false, "scripts": {}, "type": "numberentry", "maxValue": "{c+d}", "minValue": "{c+d}", "correctAnswerFraction": false, "marks": 0.5, "showPrecisionHint": false}], "type": "gapfill", "prompt": "

The marginal $f_Y(y$) of $Y$ is calculated as follows: \\[f_Y(y)=\\int_r^s f(x,y)dx\\]

\n

Input the limits of integration here:

\n

$r=\\;$?[[0]]   $s=\\;$?[[1]]

\n

Also input the range of values of $y,\\;y_1 \\le y \\le y_2$ that $f_Y(y)$ is defined on.

\n

$y_1=\\;$?[[2]]   $y_2=\\;$?[[3]]

", "showCorrectAnswer": true, "marks": 0}, {"scripts": {}, "gaps": [{"showCorrectAnswer": true, "allowFractions": false, "scripts": {}, "type": "numberentry", "maxValue": "{c}", "minValue": "{c}", "correctAnswerFraction": false, "marks": 0.5, "showPrecisionHint": false}, {"showCorrectAnswer": true, "allowFractions": false, "scripts": {}, "type": "numberentry", "maxValue": "{y1}", "minValue": "{y1}", "correctAnswerFraction": false, "marks": 0.5, "showPrecisionHint": false}, {"showCorrectAnswer": true, "allowFractions": false, "scripts": {}, "type": "numberentry", "maxValue": "{x1}", "minValue": "{x1}", "correctAnswerFraction": false, "marks": 0.5, "showPrecisionHint": false}, {"showCorrectAnswer": true, "allowFractions": false, "scripts": {}, "type": "numberentry", "maxValue": "{a+b}", "minValue": "{a+b}", "correctAnswerFraction": false, "marks": 0.5, "showPrecisionHint": false}], "type": "gapfill", "prompt": "

The conditional probability $P(Y \\le \\var{y1}|X \\ge \\var{x1})$ is calculated as follows:

\n
 
\n

 \\[P(Y \\le \\var{y1}|X \\ge \\var{x1})=\\frac{\\int_t^u\\int_v^w f(x,y) dx dy}{A}\\]

\n

Where:

\n

\\[A = \\int_{\\var{c}}^{\\var{c+d}}\\int_{\\var{x1}}^{\\var{a+b}} f(x,y) dx dy\\]

\n

Input the limits of integration here:

\n

$t=\\;$?[[0]]   $u=\\;$?[[1]]

\n

$v=\\;$?[[2]]   $w=\\;$?[[3]]

", "showCorrectAnswer": true, "marks": 0}], "statement": "

Suppose that a bivariate continuous random variable is defined on the region $R \\subset \\mathbb{R^2}$ given by:

\n

\\[\\var{a} \\le x \\le \\var{a+b},\\;\\;\\;\\;\\;\\;\\;\\var{c} \\le y \\le \\var{c+d}\\] with joint PDF given by $f(x,y)$ in $R$ and zero otherwise.

\n

In the following questions, you are asked to supply the limits of integration for the following computations:

", "tags": ["bivariate distributions", "checked2015", "conditional probability", "double integration", "limits of integration", "marginal distributions", "MAS1604", "MAS2304", "pdf", "PDF", "Probability", "statistics"], "rulesets": {}, "preamble": {"css": "", "js": ""}, "type": "question", "metadata": {"notes": "

6/02/2013:

\n

Finished first draft.

", "licence": "Creative Commons Attribution 4.0 International", "description": "

$f(x,y)$ is the PDF of a bivariate distribution $(X,Y)$ on a given rectangular region in $\\mathbb{R}^2$.  Write down the limits of the integrations needed to find $P(X \\ge a)$, the marginal distributions $f_X(x),\\;f_Y(y)$ and the conditional probability $P(Y \\le b|X \\ge c)$

"}, "variablesTest": {"condition": "", "maxRuns": 100}, "advice": "

a)

\n

The probability $P(x \\ge \\var{x1})$ is given by:

\n

\\[P(x \\ge \\var{x1})=\\int_{\\var{c}}^{\\var{c+d}}\\int_{\\var{x1}}^{\\var{a+b}} f(x,y) dx dy\\]

\n

b)

\n

The marginal $f_X(x)$ of $X$ is:

\n

\\[f_X(x)=\\int_{\\var{c}}^{\\var{c+d}}f(x,y)dy\\] and the range that $f_X(x)$ is defined on is $\\var{a} \\le x \\le \\var{a+b}$.

\n

c)

\n

The marginal $f_Y(y)$ of $Y$ is:

\n

\\[f_Y(y)=\\int_{\\var{a}}^{\\var{a+b}}f(x,y)dx\\] and the range that $f_Y(y)$ is defined on is $\\var{c} \\le x \\le \\var{c+d}$.

\n

d) The conditional probability $P(Y \\le \\var{y1}|X \\ge \\var{x1})$ is calculated as follows:

\n

 \\[P(Y \\le \\var{y1}|X \\ge \\var{x1})=\\frac{\\int_{\\var{c}}^{\\var{y1}}\\int_{\\var{x1}}^{\\var{a+b}} f(x,y) dx dy}{A}\\]

\n ", "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}]}]}], "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}]}