// Numbas version: finer_feedback_settings {"name": "Modulus and argument of a complex number II", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Modulus and argument of a complex number II", "tags": ["checked2015"], "metadata": {"description": "

Modulus and argument of a single complex number $z=z_1/z_2$, where $\\mathrm{Re}(z_1)=\\mathrm{Im}(z_1)$ and $\\mathrm{Re}(z_2)=-\\mathrm{Im}(z_2)$.

", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "

Find the modulus $\\lvert z \\rvert$ and argument $\\theta$ (with $-\\pi<\\theta\\leqslant\\pi$) of the complex number

\n

\\[\\var{z}=\\frac{\\var{z1}}{\\var{z2}}.\\]

", "advice": "

a)

\n

For a complex number $z=\\frac{a+ai}{b+bi}$, the modulus is given by

\n

\\[\\lvert z \\rvert=\\frac{\\sqrt{a^2+a^2}}{\\sqrt{b^2+b^2}}=\\frac{a\\sqrt{2}}{b\\sqrt{2}}=\\frac{a}{b}\\]

\n

In this part $a=\\var{a}$ and $b=\\var{b}$, so $\\lvert z \\rvert=\\frac{\\var{a}}{\\var{b}}=\\var{absz}$ to 3 d.p.

\n

b)

\n

To calculate the argument of a complex number $z=\\frac{a+ai}{b-bi}$, with $a>0$, $b>0$, first write $z$ in the form $z=c+di$.

\n

To do this, multiply $z=\\frac{a+ai}{b-bi}$ by $\\frac{b+bi}{b+bi}$, so that

\n

\\[z=\\frac{(a+ai)(b+bi)}{(b-bi)(b+bi)}=\\frac{2abi}{2b^2}=\\frac{a}{b}i\\]

\n

So, given that $a$ and $b$ are both positive, $\\mathrm{Im}(z)>0$, and because $\\mathrm{Re}(z)=0$, the argument is $\\theta=\\frac{\\pi}{2}$.

", "rulesets": {}, "extensions": [], "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"absz": {"name": "absz", "group": "Ungrouped variables", "definition": "precround(abs(z1/z2),3)", "description": "", "templateType": "anything", "can_override": false}, "tol": {"name": "tol", "group": "Ungrouped variables", "definition": "0.001", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(1..9)", "description": "", "templateType": "anything", "can_override": false}, "argz": {"name": "argz", "group": "Ungrouped variables", "definition": "precround(arg(z1/z2),3)", "description": "", "templateType": "anything", "can_override": false}, "z2": {"name": "z2", "group": "Ungrouped variables", "definition": "b-b*i", "description": "", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(1..9)", "description": "", "templateType": "anything", "can_override": false}, "z1": {"name": "z1", "group": "Ungrouped variables", "definition": "a+a*i", "description": "", "templateType": "anything", "can_override": false}, "z": {"name": "z", "group": "Ungrouped variables", "definition": "", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "argz", "b", "absz", "tol", "z1", "z2", "z"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$\\lvert z \\rvert=$ [[0]] (Enter your answer to 3 d.p.)

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "absz-tol", "maxValue": "absz+tol", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$\\theta=$ [[0]] (Enter your answer to 3 d.p.)

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "argz-tol", "maxValue": "argz+tol", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Shweta Sharma", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21418/"}], "resources": []}]}], "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Shweta Sharma", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21418/"}]}