// Numbas version: finer_feedback_settings {"name": "Function in real-imaginary form", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"variable_groups": [], "variables": {"b1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1..5 except a1)", "description": "", "name": "b1"}, "n3": {"templateType": "anything", "group": "Ungrouped variables", "definition": "switch (\n n=2, 0,\n n=3, 1\n)", "description": "", "name": "n3"}, "a1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1..5)", "description": "", "name": "a1"}, "n": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(2,3)", "description": "", "name": "n"}, "n2": {"templateType": "anything", "group": "Ungrouped variables", "definition": "switch (\n n=2, 1,\n n=3, 0\n)", "description": "", "name": "n2"}}, "ungrouped_variables": ["a1", "n2", "n3", "b1", "n"], "question_groups": [{"pickingStrategy": "all-ordered", "questions": [], "name": "", "pickQuestions": 0}], "name": "Function in real-imaginary form", "functions": {}, "showQuestionGroupNames": false, "parts": [{"scripts": {}, "gaps": [{"answer": "{n2}*({a1}*(x^2-y^2)+{b1}*y) + {n3}*({a1}*(x^3-3*x*y^2)+{2*b1}*x*y)", "showCorrectAnswer": true, "vsetrange": [0, 1], "checkingaccuracy": 0.001, "checkvariablenames": true, "expectedvariablenames": ["x", "y"], "showpreview": true, "checkingtype": "absdiff", "scripts": {}, "type": "jme", "answersimplification": "std", "marks": 1, "vsetrangepoints": 5}, {"answer": "{n2}*({2*a1}*x*y-{b1}*x)+{n3}*({3*a1}*x^2*y-{a1}*y^3-{b1}*(x^2-y^2))", "showCorrectAnswer": true, "vsetrange": [0, 1], "checkingaccuracy": 0.001, "checkvariablenames": true, "expectedvariablenames": ["x", "y"], "showpreview": true, "checkingtype": "absdiff", "scripts": {}, "type": "jme", "answersimplification": "std", "marks": 1, "vsetrangepoints": 5}], "type": "gapfill", "prompt": "

$g(x,y)=$ [[0]].

\n

$h(x,y)=$ [[1]].

", "showCorrectAnswer": true, "marks": 0}], "statement": "

Express the function $f(z)=\\simplify{{a1}*z^{n}-i*{b1}*z^{n-1}}$ in real-imaginary form $f(z)=g(x,y)+ih(x,y)$, given that $z=x+iy$.

", "tags": ["MAS2103", "checked2015"], "rulesets": {"std": ["all", "fractionNumbers", "!collectNumbers", "!noLeadingMinus"]}, "preamble": {"css": "", "js": ""}, "type": "question", "metadata": {"notes": "

15/7/2012:

\n

Added tags.

\n

25/02/2014

\n

Enable unexpected variable names. AJY

\n

17/02/2014

\n

Fix typo in solution to $h(x,y)$. AJY

", "licence": "Creative Commons Attribution 4.0 International", "description": "

Express $f(z)$ in real-imaginary form, given that $z=x+iy$.

"}, "variablesTest": {"condition": "", "maxRuns": 100}, "advice": "

All that is required in this question is to substitute $z=x+iy$ into the expression for $f(z)$, and rearrange to the form $f(z)=g(x,y)+ih(x,y)$, hence

\n

\\[\\begin{align}f(z)&=f(x+iy)\\\\&=\\simplify{{a1}*(x+iy)^{n}-i*{b1}*(x+iy)^{n-1}}\\\\&=\\simplify{{n2}*({a1}*(x^2-y^2)+{b1}*y) + {n3}*({a1}*(x^3-3*x*y^2)+{2*b1}*x*y)+i*({n2}*({2*a1}*x*y-{b1}*x)+{n3}*({3*a1}*x^2*y-{a1}*y^3-{b1}*(x^2+y^2)))}.\\end{align}\\]

", "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}]}]}], "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}]}