// Numbas version: exam_results_page_options {"name": "Roots of sin(z)=a", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"variable_groups": [], "variables": {"tol": {"templateType": "anything", "group": "Ungrouped variables", "definition": "0.001", "description": "", "name": "tol"}, "a1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "", "name": "a1"}, "v2": {"templateType": "anything", "group": "Ungrouped variables", "definition": "precround(ln(a1-sqrt(a1^2-1)),3)", "description": "", "name": "v2"}, "v1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "precround(ln(a1+sqrt(a1^2-1)),3)", "description": "", "name": "v1"}}, "ungrouped_variables": ["a1", "v1", "v2", "tol"], "question_groups": [{"pickingStrategy": "all-ordered", "questions": [], "name": "", "pickQuestions": 0}], "name": "Roots of sin(z)=a", "functions": {}, "showQuestionGroupNames": false, "parts": [{"scripts": {}, "gaps": [{"answer": "(1+4*n)*pi/2", "vsetrange": [0, 1], "checkingaccuracy": 0.001, "checkvariablenames": false, "expectedvariablenames": [], "notallowed": {"message": "

Do not enter decimals in your answer.

", "showStrings": false, "partialCredit": 0, "strings": ["."]}, "showpreview": true, "checkingtype": "absdiff", "scripts": {}, "type": "jme", "showCorrectAnswer": true, "marks": 1, "vsetrangepoints": 5}, {"showCorrectAnswer": true, "allowFractions": false, "scripts": {}, "type": "numberentry", "maxValue": "v1+tol", "minValue": "v1-tol", "correctAnswerFraction": false, "marks": 1, "showPrecisionHint": false}, {"showCorrectAnswer": true, "allowFractions": false, "scripts": {}, "type": "numberentry", "maxValue": "v2+tol", "minValue": "v2-tol", "correctAnswerFraction": false, "marks": 1, "showPrecisionHint": false}], "type": "gapfill", "prompt": "

$u=$ [[0]].  (Do not enter decimals in your answer.  Use $n$ for the index, and if you need to enter $\\pi$, write pi.)

\n

There are two possible numerical answers $v_1$ and $v_2$ for the imaginary part.  Enter the larger value in the first box, and the smaller value in the second box, both to 3d.p.

\n

$v_1=$ [[1]].  (Enter your answer to 3d.p.)

\n

$v_2=$ [[2]].  (Enter your answer to 3d.p.)

", "showCorrectAnswer": true, "marks": 0}], "statement": "

Find the roots of the equation $\\sin(z)=\\var{a1}$, in the form $u+iv$, where $u$ and $v$ are real, but $u$ depends on some index $n=0,\\pm 1,\\pm 2,\\ldots$, say.

", "tags": ["MAS2103", "checked2015"], "rulesets": {}, "preamble": {"css": "", "js": ""}, "type": "question", "metadata": {"notes": "

15/7/2012:

\n

Added tags.

", "licence": "Creative Commons Attribution 4.0 International", "description": "

Find the roots of $\\sin(z)=a$.

"}, "variablesTest": {"condition": "", "maxRuns": 100}, "advice": "

The equation $\\sin(z)=\\var{a1}$ can be solved by making the substitution $z=x+iy$, and using the identity

\n

\\[\\sin(x+iy)=\\sin(x)\\cosh(y)+i\\cos(x)\\sinh(y),\\]

\n

so then

\n

\\[\\sin(x)\\cosh(y)+i\\cos(x)\\sinh(y)=\\var{a1}.\\]

\n

Now equate real and imaginary parts, so

\n

\\[\\begin{align}\\sin(x)\\cosh(y)&=\\var{a1},\\tag{1}\\\\\\cos(x)\\sinh(y)&=0.\\tag{2}\\end{align}\\]

\n

From equation (2), either $\\cos(x)=0$ or $\\sinh(y)=0$.

\n

If $\\sinh(y)=0$, then $y=0$, which would imply $\\sin(x)=\\var{a1}$ from equation (1).  This is impossible, however, because $-1\\leqslant\\sin(x)\\leqslant 1$.  We must have $\\cos(x)=0$, therefore, and so

\n

\\[x=\\frac{(1+2n)\\pi}{2},\\quad n=0,\\pm 1,\\pm 2,\\ldots.\\]

\n

Substituting this value of $x$ into equation (1) implies that $\\pm\\cosh(y)=\\var{a1}$, because $\\sin(x)=\\pm 1$.

\n

Because $\\cosh(y)>0\\;\\forall y$, however, $\\sin(x)=-1$ is not permitted.  This occurs for $n=\\pm 1,\\pm 3,\\ldots$.  These values of $x$ are not permitted, therefore, so we must have

\n

\\[x=\\frac{(1+4n)\\pi}{2},\\quad n=0,\\pm 1,\\pm 2,\\ldots.\\]

\n

then $\\cosh(y)=\\var{a1}$, and therefore

\n

\\[y=\\operatorname{arcosh}(\\var{a1})\\;\\text{or}\\;y=-\\operatorname{arcosh}(\\var{a1}).\\]

\n

The roots are then $u+iv$, with

\n

\\[u=\\frac{(1+4n)\\pi}{2},\\quad n=0,\\pm 1,\\pm 2,\\ldots\\]

\n

and

\n

\\[v_{1,2}=\\pm\\operatorname{arcosh}(\\var{a1})=\\pm\\var{v1}\\;\\text{to 3d.p.}\\]

", "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}]}]}], "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}]}