// Numbas version: exam_results_page_options {"name": "Cauchy integral theorem for complex functions", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"variable_groups": [], "variables": {"b3": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(2..4)", "description": "", "name": "b3"}, "a4switch": {"templateType": "anything", "group": "Ungrouped variables", "definition": "switch (\n a4=2, [1,0,0],\n a4=3, [0,1,0],\n a4=4, [0,0,1]\n )", "description": "", "name": "a4switch"}, "n1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(2..6)", "description": "", "name": "n1"}, "b1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1..5)", "description": "", "name": "b1"}, "a1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1..5)", "description": "", "name": "a1"}, "b2": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(2..4)", "description": "", "name": "b2"}, "n3": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1..3)", "description": "", "name": "n3"}, "n2": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1..3)", "description": "", "name": "n2"}, "in4p2": {"templateType": "anything", "group": "Ungrouped variables", "definition": "switch (\n n4=1, -i,\n n4=2, 1,\n n4=3, i,\n n4=4, -1\n )", "description": "", "name": "in4p2"}, "in4p1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "switch (\n n4=1, -1,\n n4=2, -i,\n n4=3, 1,\n n4=4, i\n )", "description": "", "name": "in4p1"}, "a3": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1..5)", "description": "", "name": "a3"}, "a4": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(2..4)", "description": "", "name": "a4"}, "n4": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1..4)", "description": "", "name": "n4"}, "a2": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1..5)", "description": "", "name": "a2"}}, "ungrouped_variables": ["a4switch", "in4p2", "in4p1", "a1", "a3", "a2", "b1", "b2", "b3", "n1", "n2", "n3", "n4", "a4"], "question_groups": [{"pickingStrategy": "all-ordered", "questions": [], "name": "", "pickQuestions": 0}], "name": "Cauchy integral theorem for complex functions", "functions": {}, "showQuestionGroupNames": false, "parts": [{"scripts": {}, "gaps": [{"answer": "0", "vsetrange": [0, 1], "checkingaccuracy": 0.001, "checkvariablenames": false, "expectedvariablenames": [], "showpreview": true, "checkingtype": "absdiff", "scripts": {}, "type": "jme", "showCorrectAnswer": true, "marks": 1, "vsetrangepoints": 5}], "type": "gapfill", "prompt": "

\\[f(z)=\\simplify{{a1}*z^{n1}-{b1}*z^{n1-1}}\\]

\n

$I=$ [[0]].

", "showCorrectAnswer": true, "marks": 0}, {"scripts": {}, "gaps": [{"answer": "0", "vsetrange": [0, 1], "checkingaccuracy": 0.001, "checkvariablenames": false, "expectedvariablenames": [], "showpreview": true, "checkingtype": "absdiff", "scripts": {}, "type": "jme", "showCorrectAnswer": true, "marks": 1, "vsetrangepoints": 5}], "type": "gapfill", "prompt": "

\\[f(z)=\\simplify{{a2}*z^{n2}/(z-{b2})}\\]

\n

$I=$ [[0]].

", "showCorrectAnswer": true, "marks": 0}, {"scripts": {}, "gaps": [{"answer": "i*pi*{2*a3}/({b3}^{1+n3})", "showCorrectAnswer": true, "vsetrange": [0, 1], "checkingaccuracy": 0.001, "checkvariablenames": false, "expectedvariablenames": [], "showpreview": true, "checkingtype": "absdiff", "scripts": {}, "type": "jme", "answersimplification": "all", "marks": 1, "vsetrangepoints": 5}], "type": "gapfill", "prompt": "

\\[f(z)=\\simplify{{a3}*z^{n3}/({b3}*z-1)}\\]

\n

$I=$ [[0]].

", "showCorrectAnswer": true, "marks": 0}, {"scripts": {}, "gaps": [{"answer": "2*pi/{a4^(n4+1)}*(({in4p1*a4switch[1]}/2+{in4p1*a4switch[2]}/sqrt(2))+({in4p2*a4switch[0]}+{in4p2*a4switch[1]}*sqrt(3)/2+{in4p2*a4switch[2]}/sqrt(2)))", "vsetrange": [0, 1], "checkingaccuracy": 0.001, "checkvariablenames": false, "expectedvariablenames": [], "notallowed": {"message": "

Do not enter decimals, the exponential function, or any trigonometric functions in your answer.

", "showStrings": false, "partialCredit": 0, "strings": [".", "e", "exp", "cos", "sin", "tan", "sec", "cosec", "cot"]}, "showpreview": true, "checkingtype": "absdiff", "scripts": {}, "type": "jme", "showCorrectAnswer": true, "marks": 1, "vsetrangepoints": 5}], "type": "gapfill", "prompt": "

\\[f(z)=\\frac{\\simplify{z^{n4}}\\mathrm{e}^{\\pi z}}{\\simplify{{a4}*z}-i}\\]

\n

$I=$ [[0]].

\n

Do not use decimals, the exponential function, or any trigonometric functions in your answer.  If you need to enter $\\pi$ write pi, and if you need to enter a square root, e.g. $\\sqrt{x}$, enter sqrt(x).

", "showCorrectAnswer": true, "marks": 0}], "statement": "

For each of the following functions $f(z)$, use Cauchy's Integral Theorem or Cauchy's Integral Formula (as appropriate) to evaluate

\n

\\[I=\\oint_C{\\!f(z)\\,\\mathrm{d}z},\\]

\n

where $C$ is the unit circle $\\lvert z\\rvert=1$ mapped counter-clockwise.

", "tags": ["MAS2103", "checked2015"], "rulesets": {}, "preamble": {"css": "", "js": ""}, "type": "question", "metadata": {"notes": "

15/7/2012:

\n

Added tags.

", "licence": "Creative Commons Attribution 4.0 International", "description": "

Cauchy's integral theorem/formula for several functions $f(z)$ and $C$ the unit circle.

"}, "variablesTest": {"condition": "", "maxRuns": 100}, "advice": "

Cauchy's Integral Theorem

\n
If $f(z)$ is analytic in a simply connected domain $D$, then for every simple closed path $C$ in $D$ \\[\\oint_C{\\!f(z)\\,\\mathrm{d}z}=0.\\]
\n

Cauchy's Integral Formula

\n
Let $g(z)$ be analytic in a simply connected domain $D$. Then for any point $z_0$ in $D$, and any simple closed path $C$ in $D$ that encloses $z_0$ \\[\\oint_C{\\!\\frac{g(z)}{z-z_0}\\,\\mathrm{d}z}=2\\pi i g(z_0),\\] where the integration is performed counter-clockwise.
\n

a)

\n

$f(z)=\\simplify{{a1}*z^{n1}-{b1}*z^{n1-1}}$ is analytic for all $z$, so we can use the theorem to obtain $I=0$.

\n

 

\n

b)

\n

$f(z)=\\simplify{{a2}*z^{n2}/(z-{b2})}$ is not analytic at $z=\\var{b2}$, but this point is outside $C$, so we can again use the theorem to obtain $I=0$.

\n

 

\n

c)

\n

$f(z)=\\simplify{{a3}*z^{n3}/({b3}*z-1)}$ is not analytic at $z=\\simplify{1/{b3}}$, and this point is inside $C$, so we cannot use the theorem.

\n

Instead, we must use the formula, so

\n

\\[I=\\oint{\\!\\frac{g(z)}{z-z_0}\\,\\mathrm{d}z}=2\\pi i g(z_0),\\]

\n

where $g(z)=\\simplify{{a3}/{b3}*z^{n3}}$ and $z_0=\\simplify{1/{b3}}$, and therefore

\n

\\[I=2\\pi i\\times\\simplify{{a3}/{b3}}\\times\\simplify{1/{b3}^{n3}}=\\simplify{i*pi*{2*a3}/({b3}^{1+n3})}.\\]

\n

 

\n

d)

\n

$f(z)=\\frac{\\simplify{z^{n4}}\\mathrm{e}^{\\pi z}}{\\simplify{{a4}*z}-i}$ is not anayltic at $z=\\frac{i}{\\var{a4}}$, and this point is inside $C$, so we again cannot use the theorem.

\n

Using the formula, we have $g(z)=\\simplify{1/{a4}z^{n4}}\\mathrm{e}^{\\pi z}$, and $z_0=\\frac{i}{\\var{a4}}$, so

\n

\\[I=2\\pi i\\times\\simplify{1/{a4}}\\times\\simplify{(i/{a4})^{n4}}\\mathrm{e}^{\\frac{i\\pi}{\\var{a4}}}=\\simplify{2*pi/{a4^(n4+1)}*(({in4p1*a4switch[1]}/2+{in4p1*a4switch[2]}/sqrt(2))+({in4p2*a4switch[0]}+{in4p2*a4switch[1]}*sqrt(3)/2+{in4p2*a4switch[2]}/sqrt(2)))}.\\]

\n

", "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}]}]}], "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}]}