// Numbas version: exam_results_page_options {"name": "Complex-valued function, pair of real poles", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"variable_groups": [], "variables": {"b1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(0..3)", "description": "", "name": "b1"}, "c1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1..4)", "description": "", "name": "c1"}, "a1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1..4)", "description": "", "name": "a1"}, "d1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1..4)", "description": "", "name": "d1"}}, "ungrouped_variables": ["a1", "c1", "b1", "d1"], "question_groups": [{"pickingStrategy": "all-ordered", "questions": [], "name": "", "pickQuestions": 0}], "name": "Complex-valued function, pair of real poles", "functions": {}, "showQuestionGroupNames": false, "parts": [{"scripts": {}, "gaps": [{"answer": "0", "vsetrange": [0, 1], "checkingaccuracy": 0.001, "checkvariablenames": false, "expectedvariablenames": [], "showpreview": true, "checkingtype": "absdiff", "scripts": {}, "type": "jme", "showCorrectAnswer": true, "marks": 1, "vsetrangepoints": 5}, {"answer": "{d1}", "vsetrange": [0, 1], "checkingaccuracy": 0.001, "checkvariablenames": false, "expectedvariablenames": [], "showpreview": true, "checkingtype": "absdiff", "scripts": {}, "type": "jme", "showCorrectAnswer": true, "marks": 1, "vsetrangepoints": 5}], "type": "gapfill", "prompt": "

There are two poles $z_0$ and $z_1$.  Enter the pole with the least real part first.

\n

$z_0=$ [[0]].

\n

$z_1=$ [[1]].

", "showCorrectAnswer": true, "marks": 0}, {"scripts": {}, "gaps": [{"answer": "-{a1}/{d1}", "showCorrectAnswer": true, "vsetrange": [0, 1], "checkingaccuracy": 0.001, "checkvariablenames": false, "expectedvariablenames": [], "showpreview": true, "checkingtype": "absdiff", "scripts": {}, "type": "jme", "answersimplification": "all", "marks": 1, "vsetrangepoints": 5}, {"answer": "{a1+b1*d1+c1*d1^2}/{d1}", "showCorrectAnswer": true, "vsetrange": [0, 1], "checkingaccuracy": 0.001, "checkvariablenames": false, "expectedvariablenames": [], "showpreview": true, "checkingtype": "absdiff", "scripts": {}, "type": "jme", "answersimplification": "all", "marks": 1, "vsetrangepoints": 5}], "type": "gapfill", "prompt": "

Corresponding residue $\\underset{z=z_0}{\\operatorname{Res}}f(z)=$ [[0]].

\n

Corresponding residue $\\underset{z=z_1}{\\operatorname{Res}}f(z)=$ [[1]].

", "showCorrectAnswer": true, "marks": 0}, {"scripts": {}, "gaps": [{"answer": "{2*(b1+c1*d1)*pi*i}", "vsetrange": [0, 1], "checkingaccuracy": 0.001, "checkvariablenames": false, "expectedvariablenames": [], "showpreview": true, "checkingtype": "absdiff", "scripts": {}, "type": "jme", "showCorrectAnswer": true, "marks": 1, "vsetrangepoints": 5}], "type": "gapfill", "prompt": "

$I=$ [[0]].

", "showCorrectAnswer": true, "marks": 0}], "statement": "

For the function

\n

\\[f(z)=\\simplify{({a1}+{b1}*z+{c1}*z^2)/(z^2-{d1}*z)},\\]

\n

identify the poles (singular points) $z_0$, the corresponding residues $\\underset{z=z_0}{\\operatorname{Res}}f(z)$, and evaluate the integral

\n

\\[I=\\oint{\\!f(z)\\,\\mathrm{d}z},\\]

\n

where $C$ is the contour $\\lvert z \\rvert=5$ mapped counter-clockwise.

", "tags": ["checked2015", "MAS2103"], "rulesets": {}, "preamble": {"css": "", "js": ""}, "type": "question", "metadata": {"notes": "

15/7/2012:

\n

Added tags.

", "licence": "Creative Commons Attribution 4.0 International", "description": "

Poles, residues, and contour integral of a complex-valued function.  Pair of real poles.

"}, "variablesTest": {"condition": "", "maxRuns": 100}, "advice": "

a)

\n

The given function has two simple poles at $z=0$ and $z=\\var{d1}$.

\n

 

\n

b)

\n

For a simple pole $z=z_0$, the residue can be calculated using the formula

\n

\\[\\underset{z=z_0}{\\operatorname{Res}}=\\lim_{z\\rightarrow z_0}(z-z_0)f(z).\\]

\n

In this case, the corresponding residue for $z=0$ is

\n

\\[\\underset{z=0}{\\operatorname{Res}}=\\lim_{z\\rightarrow 0}zf(z)=\\lim_{z\\rightarrow0}\\left(\\simplify{({a1}+{b1}*z+{c1}*z^2)/(z-{d1})}\\right)=\\simplify{-{a1}/{d1}}.\\]

\n

and the corresponding residue for $z=\\var{d1}$ is

\n

\\[\\underset{z=\\var{d1}}{\\operatorname{Res}}=\\lim_{z\\rightarrow\\var{d1}}(z-\\var{d1})f(z)=\\lim_{z\\rightarrow\\var{d1}}\\left(\\simplify{({a1}+{b1}*z+{c1}*z^2)/z}\\right)=\\simplify{{a1+b1*d1+c1*d1^2}/{d1}}.\\]

\n

c)

\n

Now use the Residue Theorem to calculate the integral $I$.

\n

Residue Theorem

\n
Let $f(z)$ be analytic inside a closed path $C$, and on $C$, except at finitely many singular points $z_n=z_1,z_2,\\ldots,z_k$ inside $C$.  Then the integral of $f(z)$ taken counter-clockwise around $C$ equals $2\\pi i$ times the sum of the residues of $f(z)$ at $z_n=z_1,z_2,\\ldots,z_k$, i.e. \\[\\oint_C{\\!f(z)\\,\\mathrm{d}z}=2\\pi i\\sum_{n=1}^k{\\underset{z=z_n}{\\operatorname{Res}}f(z)}.\\]
\n

Therefore

\n

\\[I=2\\pi i\\left(\\simplify{-{a1}/{d1}}+\\simplify{{a1+b1*d1+c1*d1^2}/{d1}}\\right)=\\simplify{{2*pi*i*(b1+c1*d1)}}.\\]

", "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}]}]}], "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}]}