// Numbas version: finer_feedback_settings {"name": "Simplify integers and rationals in Z_n", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"variable_groups": [], "variables": {"s1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1,-1)", "name": "s1", "description": ""}, "b3": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(2,4,8,13,16,17)", "name": "b3", "description": ""}, "ans1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "a1*b1 + c1*d1 - f1", "name": "ans1", "description": ""}, "f1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(2..9)", "name": "f1", "description": ""}, "inv5": {"templateType": "anything", "group": "Ungrouped variables", "definition": "makepos(rinv5, 5)", "name": "inv5", "description": ""}, "ans13": {"templateType": "anything", "group": "Ungrouped variables", "definition": "makepos(ans1,3)", "name": "ans13", "description": ""}, "p3": {"templateType": "anything", "group": "Ungrouped variables", "definition": "extendedgcd1(max(3,b3),min(3,b3))", "name": "p3", "description": ""}, "inv11": {"templateType": "anything", "group": "Ungrouped variables", "definition": "makepos(rinv11, 11)", "name": "inv11", "description": ""}, "s2": {"templateType": "anything", "group": "Ungrouped variables", "definition": "if(s1=1,-1,1)", "name": "s2", "description": ""}, "rinv3": {"templateType": "anything", "group": "Ungrouped variables", "definition": "if(b3<3,q3,p3)", "name": "rinv3", "description": ""}, "q7": {"templateType": "anything", "group": "Ungrouped variables", "definition": "extendedgcd2(max(7,b3),min(7,b3))", "name": "q7", "description": ""}, "ans15": {"templateType": "anything", "group": "Ungrouped variables", "definition": "makepos(ans1,5)", "name": "ans15", "description": ""}, "inv3": {"templateType": "anything", "group": "Ungrouped variables", "definition": "makepos( rinv3, 3)", "name": "inv3", "description": ""}, "rinv7": {"templateType": "anything", "group": "Ungrouped variables", "definition": "if(b3<7,q7,p7)", "name": "rinv7", "description": ""}, "c3": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(17,19,23,29,31,37,41,43,47)", "name": "c3", "description": ""}, "q5": {"templateType": "anything", "group": "Ungrouped variables", "definition": "extendedgcd2(max(5,b3),min(5,b3))", "name": "q5", "description": ""}, "minv3": {"templateType": "anything", "group": "Ungrouped variables", "definition": "mod(c3*inv3,3)", "name": "minv3", "description": ""}, "ans111": {"templateType": "anything", "group": "Ungrouped variables", "definition": "makepos(ans1,11)", "name": "ans111", "description": ""}, "minv7": {"templateType": "anything", "group": "Ungrouped variables", "definition": "mod(c3*inv7,7)", "name": "minv7", "description": ""}, "ans211": {"templateType": "anything", "group": "Ungrouped variables", "definition": "mod(a2,11)", "name": "ans211", "description": ""}, "minv5": {"templateType": "anything", "group": "Ungrouped variables", "definition": "mod(c3*inv5,5)", "name": "minv5", "description": ""}, "ans27": {"templateType": "anything", "group": "Ungrouped variables", "definition": "mod(a2,7)", "name": "ans27", "description": ""}, "b1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "s2*random(3..4)", "name": "b1", "description": ""}, "q11": {"templateType": "anything", "group": "Ungrouped variables", "definition": "extendedgcd2(max(11,b3),min(11,b3))", "name": "q11", "description": ""}, "ans23": {"templateType": "anything", "group": "Ungrouped variables", "definition": "mod(a2,3)", "name": "ans23", "description": ""}, "p7": {"templateType": "anything", "group": "Ungrouped variables", "definition": "extendedgcd1(max(7,b3),min(7,b3))", "name": "p7", "description": ""}, "d1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(4..9)", "name": "d1", "description": ""}, "p5": {"templateType": "anything", "group": "Ungrouped variables", "definition": "extendedgcd1(max(5,b3),min(5,b3))", "name": "p5", "description": ""}, "p11": {"templateType": "anything", "group": "Ungrouped variables", "definition": "extendedgcd1(max(11,b3),min(11,b3))", "name": "p11", "description": ""}, "q3": {"templateType": "anything", "group": "Ungrouped variables", "definition": "extendedgcd2(max(3,b3),min(3,b3))", "name": "q3", "description": ""}, "inv7": {"templateType": "anything", "group": "Ungrouped variables", "definition": "makepos(rinv7, 7)", "name": "inv7", "description": ""}, "c1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(4..9)", "name": "c1", "description": ""}, "rinv11": {"templateType": "anything", "group": "Ungrouped variables", "definition": "if(b3<11,q11,p11)", "name": "rinv11", "description": ""}, "rinv5": {"templateType": "anything", "group": "Ungrouped variables", "definition": "if(b3<5,q5,p5)", "name": "rinv5", "description": ""}, "ans17": {"templateType": "anything", "group": "Ungrouped variables", "definition": "makepos(ans1,7)", "name": "ans17", "description": ""}, "ans25": {"templateType": "anything", "group": "Ungrouped variables", "definition": "mod(a2,5)", "name": "ans25", "description": ""}, "a2": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97)", "name": "a2", "description": ""}, "a1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "s1*random(3..9)", "name": "a1", "description": ""}, "minv11": {"templateType": "anything", "group": "Ungrouped variables", "definition": "mod(c3*inv11,11)", "name": "minv11", "description": ""}}, "ungrouped_variables": ["f1", "p7", "ans1", "inv11", "b1", "b3", "ans27", "ans25", "ans23", "d1", "q3", "rinv11", "q5", "ans211", "s2", "s1", "ans111", "minv11", "a1", "ans13", "a2", "q11", "ans17", "ans15", "c3", "c1", "rinv3", "rinv5", "rinv7", "p3", "q7", "p11", "inv7", "inv5", "p5", "inv3", "minv3", "minv7", "minv5"], "rulesets": {"std": ["all", "fractionNumbers", "!collectNumbers", "!noLeadingMinus"]}, "name": "Simplify integers and rationals in Z_n", "showQuestionGroupNames": false, "functions": {"extendedgcd1": {"type": "number", "language": "jme", "definition": "\n\n\nif((a|b) or (b|a),\n\n0\n\n,\n\nextendedgcd2(b,mod(a,b))\n\n)\n\n\n", "parameters": [["a", "number"], ["b", "number"]]}, "extendedgcd2": {"type": "number", "language": "jme", "definition": "\n\n\nif((a|b) or (b|a),\n\n1\n\n,\n\nextendedgcd1(b,mod(a,b))-(extendedgcd2(b,mod(a,b))*floor(a/b))\n\n)\n\n\n", "parameters": [["a", "number"], ["b", "number"]]}, "makepos": {"type": "number", "language": "jme", "definition": "mod(a,b)", "parameters": [["a", "number"], ["b", "number"]]}}, "parts": [{"scripts": {}, "gaps": [{"showCorrectAnswer": true, "allowFractions": false, "scripts": {}, "type": "numberentry", "correctAnswerFraction": false, "minValue": "{ans13}", "maxValue": "{ans13}", "marks": 0.25, "showPrecisionHint": false}, {"showCorrectAnswer": true, "allowFractions": false, "scripts": {}, "type": "numberentry", "correctAnswerFraction": false, "minValue": "{ans15}", "maxValue": "{ans15}", "marks": 0.25, "showPrecisionHint": false}, {"showCorrectAnswer": true, "allowFractions": false, "scripts": {}, "type": "numberentry", "correctAnswerFraction": false, "minValue": "{ans17}", "maxValue": "{ans17}", "marks": 0.25, "showPrecisionHint": false}, {"showCorrectAnswer": true, "allowFractions": false, "scripts": {}, "type": "numberentry", "correctAnswerFraction": false, "minValue": "{ans111}", "maxValue": "{ans111}", "marks": 0.25, "showPrecisionHint": false}, {"showCorrectAnswer": true, "allowFractions": false, "scripts": {}, "type": "numberentry", "correctAnswerFraction": false, "minValue": "{ans23}", "maxValue": "{ans23}", "marks": 0.25, "showPrecisionHint": false}, {"showCorrectAnswer": true, "allowFractions": false, "scripts": {}, "type": "numberentry", "correctAnswerFraction": false, "minValue": "{ans25}", "maxValue": "{ans25}", "marks": 0.25, "showPrecisionHint": false}, {"showCorrectAnswer": true, "allowFractions": false, "scripts": {}, "type": "numberentry", "correctAnswerFraction": false, "minValue": "{ans27}", "maxValue": "{ans27}", "marks": 0.25, "showPrecisionHint": false}, {"showCorrectAnswer": true, "allowFractions": false, "scripts": {}, "type": "numberentry", "correctAnswerFraction": false, "minValue": "{ans211}", "maxValue": "{ans211}", "marks": 0.25, "showPrecisionHint": false}, {"showCorrectAnswer": true, "allowFractions": false, "scripts": {}, "type": "numberentry", "correctAnswerFraction": false, "minValue": "{inv3}", "maxValue": "{inv3}", "marks": 0.25, "showPrecisionHint": false}, {"showCorrectAnswer": true, "allowFractions": false, "scripts": {}, "type": "numberentry", "correctAnswerFraction": false, "minValue": "{inv5}", "maxValue": "{inv5}", "marks": 0.25, "showPrecisionHint": false}, {"showCorrectAnswer": true, "allowFractions": false, "scripts": {}, "type": "numberentry", "correctAnswerFraction": false, "minValue": "{inv7}", "maxValue": "{inv7}", "marks": 0.25, "showPrecisionHint": false}, {"showCorrectAnswer": true, "allowFractions": false, "scripts": {}, "type": "numberentry", "correctAnswerFraction": false, "minValue": "{inv11}", "maxValue": "{inv11}", "marks": 0.25, "showPrecisionHint": false}, {"showCorrectAnswer": true, "allowFractions": false, "scripts": {}, "type": "numberentry", "correctAnswerFraction": false, "minValue": "{minv3}", "maxValue": "{minv3}", "marks": 0.25, "showPrecisionHint": false}, {"showCorrectAnswer": true, "allowFractions": false, "scripts": {}, "type": "numberentry", "correctAnswerFraction": false, "minValue": "{minv5}", "maxValue": "{minv5}", "marks": 0.25, "showPrecisionHint": false}, {"showCorrectAnswer": true, "allowFractions": false, "scripts": {}, "type": "numberentry", "correctAnswerFraction": false, "minValue": "{minv7}", "maxValue": "{minv7}", "marks": 0.25, "showPrecisionHint": false}, {"showCorrectAnswer": true, "allowFractions": false, "scripts": {}, "type": "numberentry", "correctAnswerFraction": false, "minValue": "{minv11}", "maxValue": "{minv11}", "marks": 0.25, "showPrecisionHint": false}], "type": "gapfill", "prompt": "
\n
$\\mathbb{Z}_{3}$ | $\\mathbb{Z}_{5}$ | $\\mathbb{Z}_{7}$ | $\\mathbb{Z}_{11}$ | |
---|---|---|---|---|
$\\simplify[!basic]{{a1}*{b1}+{c1}*{d1}-{f1}}$ | \n[[0]] | \n[[1]] | \n[[2]] | \n[[3]] | \n
$\\var{a2}$ | \n[[4]] | \n[[5]] | \n[[6]] | \n[[7]] | \n
$ \\displaystyle{ \\frac{1}{\\var{b3}} } $ | \n[[8]] | \n[[9]] | \n[[10]] | \n[[11]] | \n
$ \\displaystyle{ \\frac{\\var{c3}}{\\var{b3}} } $ | \n[[12]] | \n[[13]] | \n[[14]] | \n[[15]] | \n
Simplify the following in each of $\\mathbb{Z}_{3}, \\; \\mathbb{Z}_{5}, \\; \\mathbb{Z}_{7}$ and $\\mathbb{Z}_{11}$.
\nFor the last two questions, recall that for a prime $p$, $\\displaystyle{\\frac{1}{b} \\bmod{p}}$ is the unique solution to $bx \\equiv 1 \\bmod{p}$.
\nYou must input all values as positive integers; negative integers are not accepted.
", "tags": ["checked2015", "MAS3214"], "question_groups": [{"pickingStrategy": "all-ordered", "questions": [], "name": "", "pickQuestions": 0}], "preamble": {"css": "", "js": ""}, "type": "question", "metadata": {"notes": "", "licence": "Creative Commons Attribution 4.0 International", "description": "Express various integers and rationals mod $\\mathbb{Z}_3, \\;\\mathbb{Z}_5,\\;\\mathbb{Z}_7,\\;\\mathbb{Z}_{11}$
"}, "advice": "For the first row, it may help to simplify each of the numbers modulo the number corresponding to each column, and then perform the calculation.
\nFor example,
\n\\begin{align}
\\simplify[!basic]{{a1}*{b1}+{c1}*{d1}-{f1}} &\\equiv \\simplify[!basic]{{mod(a1,3)}*{mod(b3,3)}+{mod(c1,3)}*{mod(d1,3)}-{mod(f1,3)}} \\mod{3} \\\\
&\\equiv \\var{ans13} \\mod{3}
\\end{align}
In the second row, you just have to work out the remainder when dividing $\\var{a2}$ by each of $3$, $5$, $7$ and $11$.
\nIn the third row we have to find the inverse of $\\var{b3}$ in each of $\\mathbb{Z}_{3}$, $\\mathbb{Z}_{5}$, $\\mathbb{Z}_{7}$ and $\\mathbb{Z}_{11}$.
\nIt should be clear to you that $\\var{b3}$ is coprime to each of $3$, $5$, $7$ and $11$, hence we can find an inverse in each of $\\mathbb{Z}_{3}$, $\\mathbb{Z}_{5}$, $\\mathbb{Z}_{7}$ and $\\mathbb{Z}_{11}$.
\nYou can do this in $\\mathbb{Z}_{3}$ by finding $x$ such that $\\var{b3}x \\equiv 1 \\bmod{3}$, similarly for $5$, $7$, $11$.
\nYou can do this by trying values to find one that works; this is easy for $\\mathbb{Z}_{3}$ since there are only two cases to check, and you will find that
\n$b = \\var{inv3}$ satisfies $\\var{inv3} \\times \\var{b3} = \\var{inv3*b3} \\equiv 1 \\bmod{3}.$
\nIf you cannot immediately find an inverse in $\\mathbb{Z}_{5}$, you can use the Euclidean algorithm to find $a$ and $b$ such that
\n\\[\\var{b3}b +5a = \\operatorname{gcd}(\\var{b3},5) = 1\\]
\nas $\\var{b3}$ and $5$ are coprime.
\nIt follows that $\\var{b3}b \\equiv 1 \\bmod{5}$, and hence $b \\bmod{5}$ is the inverse of $\\var{b3}$ in $\\mathbb{Z}_{5}$.
\nUsing the Euclidean algorithm I find that
\n\\[\\simplify[!basic]{ {max(5,b3)}*{p5} + {min(5,b3)}*{q5} = 1 }.\\]
\nHence the inverse is
\n\\[ b = \\var{rinv5} \\equiv \\var{inv5} \\bmod{5}.\\]
\nOnce again if you cannot spot the solution:
\nUsing the Euclidean algorithm I find that
\n\\[\\simplify[!basic]{ {max(7,b3)}*{p7} + {min(7,b3)}*{q7} = 1 }.\\]
\nHence the inverse of $\\var{b3}$ in $\\mathbb{Z}_{7}$ is
\n\\[b = \\var{rinv7} \\equiv \\var{inv7} \\bmod{7}.\\]
\nUsing the Euclidean algorithm I find that
\n\\[\\simplify[!basic]{ {max(11,b3)}*{p11} + {min(11,b3)}*{q11} = 1}. \\]
\nHence the inverse of $\\var{b3}$ in $\\mathbb{Z}_{11}$ is
\n\\[ b = \\var{rinv11} \\equiv \\var{inv11} \\bmod{11}.\\]
\nThe last question's answers are found by, for example in $\\mathbb{Z}_{7}$, considering (all $\\bmod 7$)
\n\\[\\frac{\\var{c3}}{\\var{b3}} = \\var{c3} \\times \\frac{1}{\\var{b3}} \\equiv \\var{c3} \\times \\var{inv7} \\equiv \\var{c3*inv7} \\equiv \\var{minv7} \\bmod{7}.\\]
", "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}]}]}], "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}]}