// Numbas version: finer_feedback_settings {"name": "True/false statements on modular arithmetic", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"variablesTest": {"condition": "", "maxRuns": 100}, "variables": {"s1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1,-1)", "name": "s1", "description": ""}, "d3": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(5..8)", "name": "d3", "description": ""}, "b3": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(2,4,8,13,16,17)", "name": "b3", "description": ""}, "v": {"templateType": "anything", "group": "Ungrouped variables", "definition": "par[ch][2]", "name": "v", "description": ""}, "a": {"templateType": "anything", "group": "Ungrouped variables", "definition": "if(s1<0,u+m1+mod(a3,m1),mod(a3,m1)-m1-u)", "name": "a", "description": ""}, "c": {"templateType": "anything", "group": "Ungrouped variables", "definition": "q*random(1..m3-1)+mod(b3,m3)+s*m3", "name": "c", "description": ""}, "u": {"templateType": "anything", "group": "Ungrouped variables", "definition": "par[ch][0]", "name": "u", "description": ""}, "s2": {"templateType": "anything", "group": "Ungrouped variables", "definition": "if(s1=1,-1,1)", "name": "s2", "description": ""}, "g3": {"templateType": "anything", "group": "Ungrouped variables", "definition": "mod(g4+ v*random(1..5),m2)", "name": "g3", "description": ""}, "m3": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(5..13)", "name": "m3", "description": ""}, "torf1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "if(u=0,'true','false')", "name": "torf1", "description": ""}, "noe": {"templateType": "anything", "group": "Ungrouped variables", "definition": "4-p-u-v-t", "name": "noe", "description": ""}, "c3": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(17,19,23,29,31,37,41,43,47)", "name": "c3", "description": ""}, "b": {"templateType": "anything", "group": "Ungrouped variables", "definition": "k3-t*random(1..m2-1 except k3/t)", "name": "b", "description": ""}, "p": {"templateType": "anything", "group": "Ungrouped variables", "definition": "par[ch][3]", "name": "p", "description": ""}, "d4": {"templateType": "anything", "group": "Ungrouped variables", "definition": "d3+s1*random(1..3)", "name": "d4", "description": ""}, "q": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(0,1)", "name": "q", "description": ""}, "ch": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(0..11)", "name": "ch", "description": ""}, "torf4": {"templateType": "anything", "group": "Ungrouped variables", "definition": "if(v=0, 'true','false')", "name": "torf4", "description": ""}, "m4": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(5..13)", "name": "m4", "description": ""}, "m": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(5..13)", "name": "m", "description": ""}, "h3": {"templateType": "anything", "group": "Ungrouped variables", "definition": "mod(k3^d4+p*random(1..3),m2)", "name": "h3", "description": ""}, "h4": {"templateType": "anything", "group": "Ungrouped variables", "definition": "mod(k3^d4,m2)", "name": "h4", "description": ""}, "g4": {"templateType": "anything", "group": "Ungrouped variables", "definition": "mod(k3^d3,m2)", "name": "g4", "description": ""}, "torf3": {"templateType": "anything", "group": "Ungrouped variables", "definition": "if(t=0, 'true','false')", "name": "torf3", "description": ""}, "m1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(5..13)", "name": "m1", "description": ""}, "k3": {"templateType": "anything", "group": "Ungrouped variables", "definition": "mod(c3,m2)", "name": "k3", "description": ""}, "par": {"templateType": "anything", "group": "Ungrouped variables", "definition": "[[0,1,1,1],[1,0,1,1],[1,1,0,1],[1,1,1,0],[0,0,1,1],[0,1,0,1],[0,1,1,0],[1,0,0,1],[1,0,1,0],[1,1,0,0],[0,1,0,0],[1,0,0,0]]", "name": "par", "description": ""}, "m2": {"templateType": "anything", "group": "Ungrouped variables", "definition": "if(m1=m,m+1,m)", "name": "m2", "description": ""}, "torf2": {"templateType": "anything", "group": "Ungrouped variables", "definition": "if(q=0, 'true','false')", "name": "torf2", "description": ""}, "s": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(-2,-1,2,3)", "name": "s", "description": ""}, "a3": {"templateType": "anything", "group": "Ungrouped variables", "definition": "s1*random(19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97)", "name": "a3", "description": ""}, "t": {"templateType": "anything", "group": "Ungrouped variables", "definition": "par[ch][1]", "name": "t", "description": ""}, "torf5": {"templateType": "anything", "group": "Ungrouped variables", "definition": "if(p=0, 'true','false')", "name": "torf5", "description": ""}}, "ungrouped_variables": ["a", "a3", "b", "b3", "c", "c3", "ch", "d3", "d4", "g3", "g4", "h3", "h4", "k3", "m", "m1", "m2", "m3", "m4", "noe", "p", "par", "q", "s", "s1", "s2", "t", "torf1", "torf2", "torf3", "torf4", "torf5", "u", "v"], "name": "True/false statements on modular arithmetic", "variable_groups": [], "functions": {}, "parts": [{"layout": {"type": "all", "expression": ""}, "displayType": "radiogroup", "showCellAnswerState": true, "prompt": "

Mark each of the statements below as either true or false.

\n

You will be penalised one mark for each answer you get wrong.

\n

However, the minimum mark you can get for this question is $0$.

", "type": "m_n_x", "maxAnswers": 0, "shuffleChoices": true, "warningType": "none", "minAnswers": 0, "minMarks": 0, "shuffleAnswers": false, "variableReplacements": [], "showCorrectAnswer": true, "choices": ["$\\var{a3} \\equiv \\var{a} \\pmod{\\var{m1}}$", "$\\var{c3} \\equiv \\var{b} \\pmod{\\var{m2}}$", "$\\var{b3} \\equiv \\var{c} \\pmod{\\var{m3}}$", "$\\;\\;\\;\\var{c3}^{\\var{d3}} \\equiv \\var{g3} \\pmod{\\var{m2}}$", "$\\var{c3}^{\\var{d4}} \\equiv \\var{h3} \\pmod{\\var{m2}}$"], "extendBaseMarkingAlgorithm": true, "matrix": [["1-2*u", "2*u-1"], ["1-2*t", "2*t-1"], ["1-2*q", "2*q-1"], ["1-2*v", "2*v-1"], ["1-2*p", "2*p-1"]], "customMarkingAlgorithm": "", "unitTests": [], "answers": ["

True

", "

False

"], "scripts": {}, "maxMarks": 0, "variableReplacementStrategy": "originalfirst", "marks": 0, "showFeedbackIcon": true}], "statement": "", "tags": ["checked2015"], "rulesets": {"std": ["all", "fractionNumbers", "!collectNumbers", "!noLeadingMinus"]}, "preamble": {"css": "", "js": ""}, "type": "question", "extensions": [], "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "

Modular arithmetic

"}, "advice": "

$\\var{a3} \\equiv \\var{a} \\pmod{\\var{m1}}$

\n
\n

\\begin{align}
\\var{a3} &\\equiv \\var{a} \\pmod{\\var{m1}} \\\\
\\iff \\simplify[std]{{a3} - {a}} &\\equiv 0 \\pmod{\\var{m1}} \\\\
\\iff \\simplify[std]{{a3-a}} &\\equiv 0 \\pmod{\\var{m1}}
\\end{align}

\n

So the statement is {torf1}.

\n

$\\var{c3} \\equiv \\var{b} \\pmod{\\var{m2}}$

\n
\n

We have

\n

\\begin{align}
&& \\var{c3} &\\equiv \\var{b} \\pmod{\\var{m2}} \\\\
\\iff && \\simplify[std]{{c3} - {b}} &\\equiv 0 \\pmod{\\var{m2}} \\\\
\\iff &&\\simplify[std]{{c3-b}} &\\equiv 0 \\pmod{\\var{m2}}
\\end{align}

\n

So the statement is {torf3}.

\n

$\\var{b3} \\equiv \\var{c} \\pmod{\\var{m3}}$

\n
\n

\\begin{align}
&& \\var{b3} &\\equiv \\var{c} \\pmod{\\var{m3}} \\\\
\\iff && \\simplify[]{{b3}-{c}} &\\equiv 0 \\pmod{\\var{m3}} \\\\
\\iff && \\simplify[std]{{b3-c}} &\\equiv 0 \\pmod{\\var{m3}}
\\end{align}

\n

Which is {torf2}.

\n

$\\var{c3}^{\\var{d3}} \\equiv \\var{g3} \\pmod{\\var{m2}}$

\n
\n

We have $\\var{c3} \\equiv \\var{k3} \\pmod{\\var{m2}}$.

\n

Hence $\\var{c3}^{\\var{d3}} \\equiv \\var{k3}^{\\var{d3}} \\equiv \\var{k3^d3} \\equiv \\var{g4} \\pmod{\\var{m2}}$.

\n

So this statement is {torf4}.

\n

$\\var{c3}^{\\var{d4}} \\equiv \\var{h3} \\pmod{\\var{m2}}$

\n
\n

We have $\\var{c3} \\equiv \\var{k3} \\pmod{\\var{m2}}$

\n

Hence $\\var{c3}^{\\var{d4}} \\equiv \\var{k3}^{\\var{d4}}\\equiv \\var{k3^d4}\\equiv \\var{h4} \\pmod{\\var{m2}}$

\n

Hence this statement is {torf5}.

", "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}, {"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}]}]}], "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}, {"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}]}