// Numbas version: finer_feedback_settings {"name": "Find the smallest $n$ with given number of divisors", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"variable_groups": [], "variables": {"ta": {"templateType": "anything", "group": "Ungrouped variables", "definition": "t[j]", "description": "", "name": "ta"}, "poss": {"templateType": "anything", "group": "Ungrouped variables", "definition": "sort([2^fact[0]*3^fact[1],2^fact[1]*3^fact[0],2^fact[0]*5^fact[1],2^fact[1]*5^fact[0],2^(ta-1),3^(ta-1)])", "description": "", "name": "poss"}, "j": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(0..6)", "description": "", "name": "j"}, "t": {"templateType": "anything", "group": "Ungrouped variables", "definition": "[6,10,15,14,21,33,35]", "description": "", "name": "t"}, "pairs": {"templateType": "anything", "group": "Ungrouped variables", "definition": "[[1,2],[1,4],[2,4],[1,6],[2,6],[2,10],[4,6]]", "description": "", "name": "pairs"}, "fact": {"templateType": "anything", "group": "Ungrouped variables", "definition": "[pairs[j][0],pairs[j][1]]", "description": "", "name": "fact"}}, "ungrouped_variables": ["pairs", "j", "t", "poss", "fact", "ta"], "question_groups": [{"pickingStrategy": "all-ordered", "questions": [], "name": "", "pickQuestions": 0}], "name": "Find the smallest $n$ with given number of divisors", "functions": {}, "showQuestionGroupNames": false, "parts": [{"stepsPenalty": 0, "scripts": {}, "gaps": [{"showCorrectAnswer": true, "allowFractions": false, "scripts": {}, "type": "numberentry", "maxValue": "{poss[0]}", "minValue": "{poss[0]}", "correctAnswerFraction": false, "marks": 1, "showPrecisionHint": false}, {"showCorrectAnswer": true, "allowFractions": false, "scripts": {}, "type": "numberentry", "maxValue": "{poss[1]}", "minValue": "{poss[1]}", "correctAnswerFraction": false, "marks": 1, "showPrecisionHint": false}], "type": "gapfill", "prompt": "\n \n \n

Find the smallest natural number $n$ with exactly $\\tau(n)=\\var{t[j]}$ divisors.

\n \n \n \n

Smallest=[[0]]

\n \n \n \n

What is the second smallest?

\n \n \n \n

Second smallest=[[1]]

\n \n \n", "steps": [{"type": "information", "prompt": "\n \n \n

Recall that if $n=p_1^{\\beta_1}\\times p_2^{\\beta_2}\\times \\cdots \\times p_m^{\\beta_m}$ is the prime factorization of $n$, then the number of divisors is given by:

\n \n \n \n

$\\tau(n)=(\\beta_1+1)\\times (\\beta_2+1) \\times\\cdots \\times (\\beta_m+1)$

\n \n \n \n

Hence if $\\tau(n)= \\var{ta}$, we factorize $\\var{ta}$ to look for possible values of the $\\beta_j$

\n \n \n \n

In this example there are two possible factorizations.

\n \n \n", "showCorrectAnswer": true, "scripts": {}, "marks": 0}], "showCorrectAnswer": true, "marks": 0}], "statement": "", "tags": ["checked2015", "MAS3214", "number of divisors", "number theory", "tau(n)"], "rulesets": {"std": ["all", "fractionNumbers", "!collectNumbers", "!noLeadingMinus"]}, "preamble": {"css": "", "js": ""}, "type": "question", "metadata": {"notes": "", "licence": "Creative Commons Attribution 4.0 International", "description": "

Given $m \\in \\mathbb{N}$, find the smallest natural number $n \\in \\mathbb{N}$ with $\\tau(n)=m$ divisors.

"}, "variablesTest": {"condition": "", "maxRuns": 100}, "advice": "\n \n \n

Recall that if $n=p_1^{\\beta_1}\\times p_2^{\\beta_2}\\times \\cdots \\times p_m^{\\beta_m}$ is the prime factorization of $n$, then the number of divisors is given by:

\n \n \n \n

$\\tau(n)=(\\beta_1+1)\\times (\\beta_2+1) \\times\\cdots \\times (\\beta_m+1)$

\n \n \n \n

Hence if $\\tau(n)= \\var{ta}$, we factorize $\\var{ta}$ to look for possible values of the $\\beta_j$

\n \n \n \n

Now there are two possible factorizations i.e.

\n \n \n \n

Factorization 1. $\\var{ta}= \\var{ta}$

\n \n \n \n

Factorization 2. $\\var{ta}= \\var{fact[0]+1}\\times\\var{fact[1]+1}$

\n \n \n \n

Factorization 1:

\n \n \n \n

We have only one prime factor and $n = p_1^{\\beta_1} $ for some prime $p$.

\n \n \n \n

In this case we have $\\tau(n)= 1+\\beta_1 =\\var{ta} \\Rightarrow \\beta_1 = \\var{ta-1}$

\n \n \n \n

Hence possible values for $n$ are $2^{\\var{ta-1}}$ and $3^{\\var{ta-1}}$.

\n \n \n \n

No need to look at any more powers of primes as we want the smallest 2 and all other prime powers are greater than these two.

\n \n \n \n

But note that these may not be the smallest values of $n$ as we have now to look at case 2.

\n \n \n \n

Factorization 2:

\n \n \n \n

In this case we have two distinct prime factors as

\n \n \n \n

\\[n=p_1^{\\beta_1}p_2^{\\beta_2} \\Rightarrow \\tau(n)=(1+\\beta_1)(1+\\beta_2)= \\var{fact[0]+1}\\times\\var{fact[1]+1} \\Rightarrow \\beta_1=\\var{fact[0]},\\;\\;\\beta_2=\\var{fact[1]}\\]

\n \n \n \n

So now we look at the possibilities.

\n \n \n \n

There is no point in looking at any primes greater than 5 as combinations of powers of the primes 2,3 and 5 will give the two smallest values of $n$.

\n \n \n \n

Also the pair of primes 3, 5 cannot give one of the smallest two values as $3^{\\beta_1}5^{\\beta_2}$ is greater than both $2^{\\beta_1}5^{\\beta_2}$ and $2^{\\beta_1}3^{\\beta_2}$

\n \n \n \n

Look at the following table:

\n \n \n \n \n \n \n \n \n \n \n \n \n \n
Powers of Prime Numbers
Prime Number Pairs$(\\var{fact[0]},\\var{fact[1]})$$(\\var{fact[1]},\\var{fact[0]})$
$(2,3)$$2^{\\var{fact[0]}}\\times 3^{\\var{fact[1]}}=\\var{2^fact[0]* 3^fact[1]}$$2^{\\var{fact[1]}}\\times 3^{\\var{fact[0]}}=\\var{2^fact[1]* 3^fact[0]}$
$(2,5)$$2^{\\var{fact[0]}}\\times 5^{\\var{fact[1]}}=\\var{2^fact[0]* 5^fact[1]}$$2^{\\var{fact[1]}}\\times 5^{\\var{fact[0]}}=\\var{2^fact[1]* 5^fact[0]}$
\n \n \n \n

We see from this table for Factorization 2 and from Factorization 1 that the two smallest values for $n$ are $\\var{poss[0]}$ and $\\var{poss[1]}$.

\n \n \n", "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}]}]}], "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}]}