// Numbas version: finer_feedback_settings {"name": "Number of permutations of a finite set, ", "extensions": ["stats"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"variable_groups": [], "variables": {"ans": {"templateType": "anything", "group": "Ungrouped variables", "definition": "factorial(a)", "description": "", "name": "ans"}, "a": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(5..13)", "description": "", "name": "a"}}, "ungrouped_variables": ["a", "ans"], "question_groups": [{"pickingStrategy": "all-ordered", "questions": [], "name": "", "pickQuestions": 0}], "name": "Number of permutations of a finite set, ", "functions": {}, "showQuestionGroupNames": false, "parts": [{"scripts": {}, "gaps": [{"showCorrectAnswer": true, "allowFractions": false, "scripts": {}, "type": "numberentry", "maxValue": "ans", "minValue": "ans", "correctAnswerFraction": false, "marks": 1, "showPrecisionHint": false}], "type": "gapfill", "prompt": "

Number of outcomes = ?[[0]]

", "showCorrectAnswer": true, "marks": 0}], "statement": "

Suppose $\\var{a}$ people take part in a race. How many different outcomes does the race have, assuming that there are no ties? This includes all $\\var{a}$ positions.

", "tags": ["checked2015", "combinatorics", "MAS1701", "MAS2216", "number of ways of ordering a finite set", "ordering", "permutations", "sc"], "rulesets": {}, "preamble": {"css": "", "js": ""}, "type": "question", "metadata": {"notes": "

7/02/2013:

\n

Finished first draft. Need a description and perhaps more tags. Included an sc tag.

", "licence": "Creative Commons Attribution 4.0 International", "description": ""}, "variablesTest": {"condition": "", "maxRuns": 100}, "advice": "

There are $\\var{a}$ choices for who comes first.

\n

There are therefore $\\var{a-1}$ choices for whoever comes second and so on. 

\n

So there are $\\var{a}\\times \\var{a-1}\\times \\cdots\\times1=\\var{a}!=\\var{ans}$ ways in which the race can finish.

", "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}]}]}], "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}]}