// Numbas version: finer_feedback_settings {"name": "Fractions: Lowest form", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"variable_groups": [], "variables": {"d": {"templateType": "anything", "group": "Ungrouped variables", "definition": "map(c[x]*a[x],x,0..3)", "name": "d", "description": ""}, "a": {"templateType": "anything", "group": "Ungrouped variables", "definition": "[random(-9..-5),random(5..9),random(11..19),random(35..61)]", "name": "a", "description": ""}, "b": {"templateType": "anything", "group": "Ungrouped variables", "definition": "map(chcp(a[x],2,9,random(2..9)),x,0..2)+chcp(a[3],40,80,random(40..80))", "name": "b", "description": ""}, "c": {"templateType": "anything", "group": "Ungrouped variables", "definition": "[random(2..9),random(2..9),random(2..9),random(40..70)]", "name": "c", "description": ""}, "f": {"templateType": "anything", "group": "Ungrouped variables", "definition": "map(c[x]*b[x],x,0..3)", "name": "f", "description": ""}}, "ungrouped_variables": ["a", "c", "b", "d", "f"], "question_groups": [{"pickingStrategy": "all-ordered", "questions": [], "name": "", "pickQuestions": 0}], "name": "Fractions: Lowest form", "functions": {"chcp": {"type": "number", "language": "jme", "definition": "if(gcd(a,d)=1,d,chcp(a,b,c,random(b..c)))", "parameters": [["a", "number"], ["b", "number"], ["c", "number"], ["d", "number"]]}}, "showQuestionGroupNames": false, "parts": [{"marks": 0, "scripts": {}, "gaps": [{"answer": "{a[0]}/{b[0]}", "musthave": {"message": "

Input as a fraction.

", "showStrings": false, "partialCredit": 0, "strings": ["/"]}, "vsetrange": [0, 1], "checkingaccuracy": 0.001, "checkvariablenames": false, "expectedvariablenames": [], "notallowed": {"message": "

Input as a fraction in lowest form without brackets.

", "showStrings": false, "partialCredit": 0, "strings": ["(", "."]}, "showpreview": true, "maxlength": {"length": 4, "message": "

Input as a fraction in lowest form by cancelling common factors in the denominator and numerator.

", "partialCredit": 0}, "checkingtype": "absdiff", "scripts": {}, "answersimplification": "std", "type": "jme", "showCorrectAnswer": true, "marks": 0.5, "vsetrangepoints": 5}, {"answer": "{a[1]}/{b[1]}", "musthave": {"message": "

Input as a fraction.

", "showStrings": false, "partialCredit": 0, "strings": ["/"]}, "vsetrange": [0, 1], "checkingaccuracy": 0.001, "checkvariablenames": false, "expectedvariablenames": [], "notallowed": {"message": "

Input as a fraction in lowest form without brackets.

", "showStrings": false, "partialCredit": 0, "strings": ["(", "."]}, "showpreview": true, "maxlength": {"length": 3, "message": "

Input as a fraction in lowest form by cancelling common factors in the denominator and numerator.

", "partialCredit": 0}, "checkingtype": "absdiff", "scripts": {}, "answersimplification": "std", "type": "jme", "showCorrectAnswer": true, "marks": 0.5, "vsetrangepoints": 5}, {"answer": "{a[2]}/{b[2]}", "musthave": {"message": "

Input as a fraction.

", "showStrings": false, "partialCredit": 0, "strings": ["/"]}, "vsetrange": [0, 1], "checkingaccuracy": 0.001, "checkvariablenames": false, "expectedvariablenames": [], "notallowed": {"message": "

Input as a fraction in lowest form. Do not include brackets in your answer.

", "showStrings": false, "partialCredit": 0, "strings": ["(", "."]}, "showpreview": true, "maxlength": {"length": 4, "message": "

Input as a fraction in lowest form by cancelling common factors in the denominator and numerator.

", "partialCredit": 0}, "checkingtype": "absdiff", "scripts": {}, "answersimplification": "std", "type": "jme", "showCorrectAnswer": true, "marks": 0.5, "vsetrangepoints": 5}, {"answer": "{a[3]}/{b[3]}", "musthave": {"message": "

Input as a fraction.

", "showStrings": false, "partialCredit": 0, "strings": ["/"]}, "vsetrange": [0, 1], "checkingaccuracy": 0.001, "checkvariablenames": false, "expectedvariablenames": [], "notallowed": {"message": "

Input as a fraction in lowest form. Do not include brackets in your answer.

", "showStrings": false, "partialCredit": 0, "strings": ["(", "."]}, "showpreview": true, "maxlength": {"length": 5, "message": "

Input as a fraction in lowest form by cancelling common factors in the denominator and numerator.

", "partialCredit": 0}, "checkingtype": "absdiff", "scripts": {}, "answersimplification": "std", "type": "jme", "showCorrectAnswer": true, "marks": 1.5, "vsetrangepoints": 5}], "type": "gapfill", "showCorrectAnswer": true, "steps": [{"type": "information", "showCorrectAnswer": true, "prompt": "

Given a fraction $\\displaystyle \\frac{a}{b}$ then it is in lowest form if $a$ and $b$ have no common factors. 

\n

If $c$ was a common factor then we could cancel the $c$ and we have converted the fraction into a fraction with smaller numbers.

\n

For example the fraction $\\displaystyle \\frac{18}{24}=\\frac{9 \\times 2}{12 \\times 2} = \\frac{9}{12}$ as we can cancel the common factor $2$.

\n

But we are not yet finished as $\\displaystyle \\frac{9}{12}=\\frac{3 \\times 3}{4 \\times 3} = \\frac{3}{4}$ on cancelling the common factor $3$. We cannot go any further as $3$ and $4$ have no common factors (other than $1$, which is never considered as a factor).

\n

Of  course we could have spotted that $6$ was a common factor  as $\\displaystyle \\frac{18}{24}=\\frac{3 \\times 6}{4 \\times 6}=\\frac{3}{4}$ , but it is perfectly OK to do it in stages as we did above. Just make sure that your final fraction does not have common factors.

\n

 

", "marks": 0, "scripts": {}}], "prompt": "

$\\displaystyle \\simplify[noc]{{d[0]}/{f[0]}}\\;=$[[0]],$\\;\\;\\displaystyle \\simplify[noc]{{d[1]}/{f[1]}}\\;=$[[1]],$\\;\\;\\displaystyle \\simplify[noc]{{d[2]}/{f[2]}}\\;=$[[2]],$\\;\\;\\displaystyle \\simplify[noc]{{d[3]}/{f[3]}}\\;=$[[3]]

\n

Input as fractions and do not include brackets in your answer.

\n

You can click on Show steps for help. You will not lose any marks if you do.

", "stepsPenalty": 0}], "statement": "

Reduce the following fractions to their lowest form.

", "tags": ["Fractions", "SFY0001", "cancellation", "cancelling", "cancelling ", "checked2015", "common factor", "denominator", "lowest form", "numerator"], "rulesets": {"noc": ["std", "!simplifyFractions"], "std": ["all", "fractionNumbers"]}, "preamble": {"css": "", "js": ""}, "type": "question", "metadata": {"notes": "

11/08/2012:

\n

Added tags.

\n

Added description.

\n

Function chcp(a,b,c,d) gives number coprime to a in the range b..c, d is usually random(b..c) for redundant reasons!

\n

Note that the answer is constrained by max length as well as requiring / and no brackets.

", "licence": "Creative Commons Attribution 4.0 International", "description": "

Reducing fractions to their lowest form by cancelling common factors in the numerator and denominator. There are 4 questions. 

"}, "variablesTest": {"condition": "", "maxRuns": 100}, "advice": "

We have:

\n

$\\displaystyle \\simplify[noc]{{d[0]}/{f[0]}}=\\simplify[]{({a[0]}*{c[0]})/({b[0]}*{c[0]})}=\\simplify[all]{{a[0]}/{b[0]}}$. Common factor $\\var{c[0]}$.

\n

$\\displaystyle \\simplify[noc]{{d[1]}/{f[1]}}=\\simplify[]{({a[1]}*{c[1]})/({b[1]}*{c[1]})}=\\simplify[all]{{a[1]}/{b[1]}}$. Common factor $\\var{c[1]}$.

\n

$\\displaystyle \\simplify[noc]{{d[2]}/{f[2]}}=\\simplify[]{({a[2]}*{c[2]})/({b[2]}*{c[2]})}=\\simplify[all]{{a[2]}/{b[2]}}$. Common factor $\\var{c[2]}$.

\n

$\\displaystyle \\simplify[noc]{{d[3]}/{f[3]}}=\\simplify[]{({a[3]}*{c[3]})/({b[3]}*{c[3]})}=\\simplify[all]{{a[3]}/{b[3]}}$. Common factor $\\var{c[3]}$.

", "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}]}]}], "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}]}