// Numbas version: finer_feedback_settings {"name": "Combining algebraic fractions 3.0", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"variable_groups": [], "variables": {"s1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "if(c<0,-1,1)", "name": "s1", "description": ""}, "d": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(-9..9 except [0,round(b2*a2/c)])", "name": "d", "description": ""}, "c": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1..9 except a)", "name": "c", "description": ""}, "nb": {"templateType": "anything", "group": "Ungrouped variables", "definition": "if(c<0,'taking away','adding')", "name": "nb", "description": ""}, "b1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(-5..5 except 0)", "name": "b1", "description": ""}, "a": {"templateType": "anything", "group": "Ungrouped variables", "definition": "0", "name": "a", "description": ""}, "b2": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(-5..5 except 0)", "name": "b2", "description": ""}, "a2": {"templateType": "anything", "group": "Ungrouped variables", "definition": "1", "name": "a2", "description": ""}}, "ungrouped_variables": ["a", "c", "d", "s1", "a2", "b1", "b2", "nb"], "name": "Combining algebraic fractions 3.0", "functions": {}, "parts": [{"customName": "", "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "steps": [{"prompt": "
Note that:
\\[\\simplify[std]{a + (c / d) = (a*d + c) / d}\\]
Express \\[\\simplify[std]{{a}x+{b1} } +\\simplify[std]{ ({c}x+{b2}) / ({a2}x + {d})}\\] as a single fraction.
\nInput the fraction here: [[0]].
\nClick on Show steps to get more information. You will lose one mark if you do so.
\n\n ", "stepsPenalty": 1, "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "scripts": {}, "gaps": [{"answer": "( {c+b1*a2} * x + {b1 * d + b2 })/ ( ({a2}*x + {d}))", "scripts": {}, "answerSimplification": "std", "useCustomName": false, "checkingType": "absdiff", "valuegenerators": [{"value": "", "name": "x"}], "vsetRange": [10, 11], "showFeedbackIcon": true, "type": "jme", "variableReplacementStrategy": "originalfirst", "checkingAccuracy": 1e-05, "variableReplacements": [], "failureRate": 1, "showCorrectAnswer": true, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "customName": "", "checkVariableNames": false, "unitTests": [], "mustmatchpattern": {"message": "Enter your answer as a single fraction.", "pattern": "?/(`!$n)", "partialCredit": 0, "nameToCompare": ""}, "vsetRangePoints": 5, "showPreview": true, "marks": 2}], "type": "gapfill", "unitTests": [], "showCorrectAnswer": true, "variableReplacements": [], "marks": 0, "sortAnswers": false}], "variablesTest": {"condition": "", "maxRuns": 100}, "statement": "
Express the following as a single fraction.
", "tags": ["algebra", "algebraic fractions", "algebraic manipulation", "checked2015", "combining algebraic fractions"], "rulesets": {"std": ["all", "fractionNumbers", "!noLeadingMinus", "!collectNumbers"]}, "preamble": {"css": "", "js": ""}, "type": "question", "extensions": [], "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "Express $\\displaystyle b+ \\frac{dx+p}{x + q}$ as an algebraic single fraction.
"}, "advice": "The formula for adding these expressions is:
\n\\[\\simplify[std]{a + (c / d) = (ad + c) / d}\\]
\nand for this exercise we have $\\simplify{a={b1}}$, $\\simplify{c={c}x+{b2}}$, $\\simplify{d={a2}x+{d}}$.
\nHence we have:
\\[\\begin{eqnarray*} \\simplify[std]{{b1} } +\\simplify[std]{ ({c}x+{b2}) / ({a2}x + {d})} &=& \\simplify{(({b1}) * ({a2}*x + {d}) + ({c}x+{b2}) ) / ( ({a2}*x + {d}))}\\\\ &=&\\simplify[std]{ (({b1*a2}x+{b1*d})+{c}x+{b2}) / ( ({a2}*x + {d}))}\\\\&=&\\simplify[std]{ ( {b1*a2+ c }x+{b1*d+b2}) / (({a2}*x + {d}))}\\end{eqnarray*}\\]