// Numbas version: finer_feedback_settings {"name": "Compute more complicated combinations of fractions and reduce to lowest terms", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"variable_groups": [], "variables": {"u2": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1..9)", "description": "", "name": "u2"}, "x21": {"templateType": "anything", "group": "Ungrouped variables", "definition": "s2*v2*x2/(r2*v2-s2*u2)", "description": "", "name": "x21"}, "e2": {"templateType": "anything", "group": "Ungrouped variables", "definition": "x2/z2", "description": "", "name": "e2"}, "s2": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(2..11 except r2)", "description": "", "name": "s2"}, "r2": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1..9)", "description": "", "name": "r2"}, "o2": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1..9)", "description": "", "name": "o2"}, "c2": {"templateType": "anything", "group": "Ungrouped variables", "definition": "u2/w2", "description": "", "name": "c2"}, "d2": {"templateType": "anything", "group": "Ungrouped variables", "definition": "v2/w2", "description": "", "name": "d2"}, "v2": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(2..11 except [u2,s2,u21])", "description": "", "name": "v2"}, "j2": {"templateType": "anything", "group": "Ungrouped variables", "definition": "gcd(a2*d2*f2-b2*c2*f2+b2*d2*e2,b2*d2*f2)", "description": "", "name": "j2"}, "f2": {"templateType": "anything", "group": "Ungrouped variables", "definition": "y2/z2", "description": "", "name": "f2"}, "p2": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(2..11 except o2)", "description": "", "name": "p2"}, "l2": {"templateType": "anything", "group": "Ungrouped variables", "definition": "gcd(a2*d2*f2+b2*c2*e2,b2*d2*f2)", "description": "", "name": "l2"}, "a2": {"templateType": "anything", "group": "Ungrouped variables", "definition": "r2/t2", "description": "", "name": "a2"}, "h2": {"templateType": "anything", "group": "Ungrouped variables", "definition": "p2/q2", "description": "", "name": "h2"}, "i2": {"templateType": "anything", "group": "Ungrouped variables", "definition": "gcd(a2*d2*f2+b2*c2*f2+b2*d2*e2,b2*d2*f2)", "description": "", "name": "i2"}, "x2": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1..9)", "description": "", "name": "x2"}, "x22": {"templateType": "anything", "group": "Ungrouped variables", "definition": "-x21", "description": "", "name": "x22"}, "z2": {"templateType": "anything", "group": "Ungrouped variables", "definition": "gcd(x2,y2)", "description": "", "name": "z2"}, "y2": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(2..11 except [u2,s2,v2,x2,x21,x22])", "description": "", "name": "y2"}, "u21": {"templateType": "anything", "group": "Ungrouped variables", "definition": "s2*u2/r2", "description": "", "name": "u21"}, "b2": {"templateType": "anything", "group": "Ungrouped variables", "definition": "s2/t2", "description": "", "name": "b2"}, "w2": {"templateType": "anything", "group": "Ungrouped variables", "definition": "gcd(u2,v2)", "description": "", "name": "w2"}, "t2": {"templateType": "anything", "group": "Ungrouped variables", "definition": "gcd(r2,s2)", "description": "", "name": "t2"}, "m2": {"templateType": "anything", "group": "Ungrouped variables", "definition": "gcd(a2*d2*f2*h2+b2*c2*f2*g2+b2*d2*e2*h2,b2*d2*f2*h2)", "description": "", "name": "m2"}, "q2": {"templateType": "anything", "group": "Ungrouped variables", "definition": "gcd(o2,p2)", "description": "", "name": "q2"}, "g2": {"templateType": "anything", "group": "Ungrouped variables", "definition": "o2/q2", "description": "", "name": "g2"}, "k2": {"templateType": "anything", "group": "Ungrouped variables", "definition": "gcd(a2*d2*f2-b2*c2*f2-b2*d2*e2,b2*d2*f2)", "description": "", "name": "k2"}}, "ungrouped_variables": ["f2", "h2", "j2", "w2", "b2", "y2", "d2", "q2", "s2", "u2", "k2", "m2", "x21", "o2", "x22", "g2", "i2", "v2", "a2", "x2", "c2", "z2", "e2", "p2", "r2", "t2", "l2", "u21"], "question_groups": [{"pickingStrategy": "all-ordered", "questions": [], "name": "", "pickQuestions": 0}], "name": "Compute more complicated combinations of fractions and reduce to lowest terms", "functions": {}, "showQuestionGroupNames": false, "parts": [{"prompt": "
$\\dfrac{\\var{a2}}{\\var{b2}} + \\dfrac{\\var{c2}}{\\var{d2}} + \\dfrac{\\var{e2}}{\\var{f2}}$
\nIn lowest terms, the numerator is [[0]], the denominator is [[1]]
", "scripts": {}, "gaps": [{"correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "allowFractions": false, "type": "numberentry", "maxValue": "{(a2*d2*f2+b2*c2*f2+b2*d2*e2)/i2}", "minValue": "{(a2*d2*f2+b2*c2*f2+b2*d2*e2)/i2}", "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "marks": 1, "showPrecisionHint": false}, {"correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "allowFractions": false, "type": "numberentry", "maxValue": "{(b2*d2*f2)/i2}", "minValue": "{(b2*d2*f2)/i2}", "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "marks": 1, "showPrecisionHint": false}], "type": "gapfill", "showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "marks": 0}, {"prompt": "\n$\\dfrac{\\var{a2}}{\\var{b2}} - \\dfrac{\\var{c2}}{\\var{d2}} + \\dfrac{\\var{e2}}{\\var{f2}}$
In lowest terms, the numerator is [[0]], the denominator is [[1]]
\n \n ", "scripts": {}, "gaps": [{"correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "allowFractions": false, "type": "numberentry", "maxValue": "{(a2*d2*f2-b2*c2*f2+b2*d2*e2)/j2}", "minValue": "{(a2*d2*f2-b2*c2*f2+b2*d2*e2)/j2}", "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "marks": 1, "showPrecisionHint": false}, {"correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "allowFractions": false, "type": "numberentry", "maxValue": "{(b2*d2*f2)/j2}", "minValue": "{(b2*d2*f2)/j2}", "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "marks": 1, "showPrecisionHint": false}], "type": "gapfill", "showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "marks": 0}, {"prompt": "\n$\\dfrac{\\var{a2}}{\\var{b2}} - \\dfrac{\\var{c2}}{\\var{d2}} - \\dfrac{\\var{e2}}{\\var{f2}}$
In lowest terms, the numerator is [[0]], the denominator is [[1]]
\n \n ", "scripts": {}, "gaps": [{"correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "allowFractions": false, "type": "numberentry", "maxValue": "{(a2*d2*f2-b2*c2*f2-b2*d2*e2)/k2}", "minValue": "{(a2*d2*f2-b2*c2*f2-b2*d2*e2)/k2}", "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "marks": 1, "showPrecisionHint": false}, {"correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "allowFractions": false, "type": "numberentry", "maxValue": "{(b2*d2*f2)/k2}", "minValue": "{(b2*d2*f2)/k2}", "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "marks": 1, "showPrecisionHint": false}], "type": "gapfill", "showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "marks": 0}, {"prompt": "$\\dfrac{\\var{a2}}{\\var{b2}} + \\dfrac{\\var{c2}}{\\var{d2}} \\times \\dfrac{\\var{e2}}{\\var{f2}}$
\nIn lowest terms, the numerator is [[0]], the denominator is [[1]]
", "scripts": {}, "gaps": [{"correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "allowFractions": false, "type": "numberentry", "maxValue": "{(a2*d2*f2+b2*c2*e2)/l2}", "minValue": "{(a2*d2*f2+b2*c2*e2)/l2}", "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "marks": 1, "showPrecisionHint": false}, {"correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "allowFractions": false, "type": "numberentry", "maxValue": "{(b2*d2*f2)/l2}", "minValue": "{(b2*d2*f2)/l2}", "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "marks": 1, "showPrecisionHint": false}], "type": "gapfill", "showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "marks": 0}, {"prompt": "$\\dfrac{\\var{a2}}{\\var{b2}} + \\dfrac{\\var{c2}}{\\var{d2}} \\times \\dfrac{\\var{g2}}{\\var{h2}}+\\dfrac{\\var{e2}}{\\var{f2}}$
\nIn lowest terms, the numerator is [[0]], the denominator is [[1]]
", "scripts": {}, "gaps": [{"correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "allowFractions": false, "type": "numberentry", "maxValue": "{(a2*d2*f2*h2+b2*c2*f2*g2+b2*d2*e2*h2)/m2}", "minValue": "{(a2*d2*f2*h2+b2*c2*f2*g2+b2*d2*e2*h2)/m2}", "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "marks": 1, "showPrecisionHint": false}, {"correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "allowFractions": false, "type": "numberentry", "maxValue": "{(b2*d2*f2*h2)/m2}", "minValue": "{(b2*d2*f2*h2)/m2}", "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "marks": 1, "showPrecisionHint": false}], "type": "gapfill", "showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "marks": 0}], "statement": "Evaluate the following as fractions in lowest terms. Write the numerator and denominator of the lowest term fraction in the boxes provided.
", "tags": ["checked2015", "Fractions", "fractions", "Lowest terms", "SFY0001"], "rulesets": {}, "preamble": {"css": "", "js": ""}, "type": "question", "metadata": {"notes": "", "licence": "Creative Commons Attribution 4.0 International", "description": "Harder questions testing addition, subtraction, multiplication and division of numerical fractions and reduction to lowest terms. They also test BIDMAS in the context of fractions.
"}, "variablesTest": {"condition": "", "maxRuns": 100}, "advice": "Perform the various operations required in the order dictated by BIDMAS.
\nFor addition and subtraction, write fractions so that they have a common denominator and then perform addition or subtraction on the numerators. One method of doing this is 'cross-multiplication'. The rules are :
\n\\[\\simplify{a/b+ c/d=(a*d+b*c)/(b*d)}.\\]
\\[\\simplify{a/b- c/d=(a*d-b*c)/(b*d)}.\\]
For multiplication and division the rules are simpler:
\n\\[\\simplify{(a/b)} \\times \\simplify{(c/d)=(a*c)/(b*d)}.\\]
\\[\\simplify{(a/b)} / \\simplify{(c/d)}=\\simplify{(a*d)/(b*c)}.\\]
Having applied these rules, it will be necessary to reduce the resulting fractions to lowest terms. In some of the following there might be slightly simpler approaches possible.
\na) $\\dfrac{\\var{a2}}{\\var{b2}} + \\dfrac{\\var{c2}}{\\var{d2}} + \\dfrac{\\var{e2}}{\\var{f2}}=\\dfrac{\\var{a2*d2}+ \\var{b2*c2}}{\\var{b2*d2}} + \\dfrac{\\var{e2}}{\\var{f2}}=\\dfrac{\\var{a2*d2+ b2*c2}}{\\var{b2*d2}} + \\dfrac{\\var{e2}}{\\var{f2}}=\\dfrac{\\var{a2*d2+ b2*c2} \\times \\var{f2}+\\var{b2*d2} \\times \\var{e2}}{\\var{b2*d2} \\times \\var{f2}}=\\dfrac{\\var{(a2*d2+ b2*c2)*f2}+\\var{b2*d2*e2}}{\\var{b2*d2*f2}}=\\dfrac{\\var{(a2*d2+ b2*c2)*f2+b2*d2*e2}}{\\var{b2*d2*f2}}$.
\nIn lowest terms, this is $\\dfrac{\\var{(a2*d2*f2+b2*c2*f2+b2*d2*e2)/i2}}{\\var{(b2*d2*f2)/i2}}$.
\n\nb) $\\dfrac{\\var{a2}}{\\var{b2}} - \\dfrac{\\var{c2}}{\\var{d2}} + \\dfrac{\\var{e2}}{\\var{f2}}=\\dfrac{\\var{a2*d2}- \\var{b2*c2}}{\\var{b2*d2}} + \\dfrac{\\var{e2}}{\\var{f2}}=\\dfrac{\\var{a2*d2- b2*c2}}{\\var{b2*d2}} + \\dfrac{\\var{e2}}{\\var{f2}}=\\dfrac{\\var{a2*d2- b2*c2} \\times \\var{f2}+\\var{b2*d2} \\times \\var{e2}}{\\var{b2*d2} \\times \\var{f2}}=\\dfrac{\\var{(a2*d2- b2*c2)*f2}+\\var{b2*d2*e2}}{\\var{b2*d2*f2}}=\\dfrac{\\var{(a2*d2- b2*c2)*f2+b2*d2*e2}}{\\var{b2*d2*f2}}$.
\nIn lowest terms, this is $\\dfrac{\\var{(a2*d2*f2-b2*c2*f2+b2*d2*e2)/j2}}{\\var{(b2*d2*f2)/j2}}$.
\n\nc) $\\dfrac{\\var{a2}}{\\var{b2}} - \\dfrac{\\var{c2}}{\\var{d2}} - \\dfrac{\\var{e2}}{\\var{f2}}=\\dfrac{\\var{a2*d2}- \\var{b2*c2}}{\\var{b2*d2}} - \\dfrac{\\var{e2}}{\\var{f2}}=\\dfrac{\\var{a2*d2- b2*c2}}{\\var{b2*d2}} - \\dfrac{\\var{e2}}{\\var{f2}}=\\dfrac{\\var{a2*d2- b2*c2}\\times \\var{f2}-\\var{b2*d2} \\times \\var{e2}}{\\var{b2*d2} \\times \\var{f2}}=\\dfrac{\\var{(a2*d2- b2*c2)*f2}-\\var{b2*d2*e2}}{\\var{b2*d2*f2}}=\\dfrac{\\var{(a2*d2- b2*c2)*f2-b2*d2*e2}}{\\var{b2*d2*f2}}$.
\nIn lowest terms, this is $\\dfrac{\\var{(a2*d2*f2-b2*c2*f2-b2*d2*e2)/k2}}{\\var{(b2*d2*f2)/k2}}$.
\n\nd) $\\dfrac{\\var{a2}}{\\var{b2}} + \\dfrac{\\var{c2}}{\\var{d2}} \\times \\dfrac{\\var{e2}}{\\var{f2}}=\\dfrac{\\var{a2}}{\\var{b2}} + \\dfrac{\\var{c2}\\times \\var{e2}}{\\var{d2} \\times \\var{f2}}=\\dfrac{\\var{a2}}{\\var{b2}} + \\dfrac{\\var{c2*e2}}{\\var{d2*f2}} =\\dfrac{\\var{a2} \\times \\var{d2*f2}}{\\var{b2} \\times \\var{d2*f2}} + \\dfrac{\\var{b2} \\times \\var{c2*e2}}{\\var{b2}\\times \\var{d2*f2}}=\\dfrac{\\var{a2*d2*f2}+\\var{b2*c2*e2}}{\\var{b2*d2*f2}}=\\dfrac{\\var{a2*d2*f2+b2*c2*e2}}{\\var{b2*d2*f2}} $.
\nIn lowest terms this is $\\dfrac{\\var{(a2*d2*f2+b2*c2*e2)/l2}}{\\var{(b2*d2*f2)/l2}} $
\n\ne) $\\dfrac{\\var{a2}}{\\var{b2}} + \\dfrac{\\var{c2}}{\\var{d2}} \\times \\dfrac{\\var{g2}}{\\var{h2}}+\\dfrac{\\var{e2}}{\\var{f2}}=\\dfrac{\\var{a2}}{\\var{b2}} +\\left[ \\dfrac{\\var{c2}}{\\var{d2}} \\times \\dfrac{\\var{g2}}{\\var{h2}}\\right]+\\dfrac{\\var{e2}}{\\var{f2}}=\\dfrac{\\var{a2}}{\\var{b2}} +\\left[ \\dfrac{\\var{c2} \\times \\var{g2} }{\\var{d2} \\times \\var{h2}} \\right]+\\dfrac{\\var{e2}}{\\var{f2}}=\\dfrac{\\var{a2}}{\\var{b2}} + \\dfrac{\\var{c2*g2} }{\\var{d2*h2}} +\\dfrac{\\var{e2}}{\\var{f2}}$
\n$=\\left[\\dfrac{\\var{a2}}{\\var{b2}} + \\dfrac{\\var{c2*g2} }{\\var{d2*h2}} \\right]+\\dfrac{\\var{e2}}{\\var{f2}}=\\dfrac{\\var{a2} \\times \\var{d2*h2}+\\var{b2} \\times \\var{c2*g2}}{\\var{b2} \\times \\var{d2*h2}} +\\dfrac{\\var{e2}}{\\var{f2}}=\\dfrac{\\var{a2*d2*h2+b2*c2*g2}}{\\var{b2*d2*h2}} +\\dfrac{\\var{e2}}{\\var{f2}}=\\dfrac{\\var{a2*d2*h2+b2*c2*g2} \\times \\var{f2}+\\var{b2*d2*h2} \\times \\var{e2}}{\\var{b2*d2*h2} \\times \\var{f2}}=\\dfrac{\\var{(a2*d2*h2+b2*c2*g2)*f2+b2*d2*h2*e2}}{\\var{b2*d2*h2*f2}}$.
\nIn lowest terms this is $\\dfrac{\\var{((a2*d2*h2+b2*c2*g2)*f2+b2*d2*h2*e2)/m2}}{\\var{b2*d2*h2*f2/m2}}$.
\n\n", "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}]}]}], "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}]}