// Numbas version: finer_feedback_settings {"name": "Index Laws 1", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"variable_groups": [], "variables": {"t1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(3..5)", "description": "", "name": "t1"}, "n": {"templateType": "anything", "group": "Ungrouped variables", "definition": "t*f", "description": "", "name": "n"}, "b": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1..5)", "description": "", "name": "b"}, "c": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(-3..3)", "description": "", "name": "c"}, "f": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(2..5)", "description": "", "name": "f"}, "d": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(2..5)", "description": "", "name": "d"}, "t": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(3..5)", "description": "", "name": "t"}, "a1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(2..6)", "description": "", "name": "a1"}, "a": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(2..6)", "description": "", "name": "a"}, "m": {"templateType": "anything", "group": "Ungrouped variables", "definition": "a*f+b*c*f*t-d*t", "description": "", "name": "m"}}, "ungrouped_variables": ["a", "c", "b", "d", "f", "m", "t1", "a1", "t", "n"], "question_groups": [{"pickingStrategy": "all-ordered", "questions": [], "name": "", "pickQuestions": 0}], "name": "Index Laws 1", "functions": {}, "showQuestionGroupNames": false, "parts": [{"scripts": {}, "gaps": [{"answer": "{a1}/{t1}", "vsetrange": [0, 1], "checkingaccuracy": 0.0001, "showCorrectAnswer": true, "expectedvariablenames": [], "notallowed": {"message": "

Input as a fraction or an integer, not as a decimal.

", "showStrings": false, "partialCredit": 0, "strings": ["."]}, "showpreview": true, "checkingtype": "absdiff", "scripts": {}, "checkvariablenames": false, "type": "jme", "answersimplification": "std", "marks": 2, "vsetrangepoints": 5}], "type": "gapfill", "prompt": "\n

${\\LARGE\\sqrt[\\var{t1}]{\\var{2^{a1}}}}$

The power is [[0]]

\n \n ", "showCorrectAnswer": true, "marks": 0}, {"scripts": {}, "gaps": [{"answer": "{m}/{n}", "vsetrange": [0, 1], "checkingaccuracy": 0.0001, "showCorrectAnswer": true, "expectedvariablenames": [], "notallowed": {"message": "

Input as a fraction or an integer, not as a decimal.

", "showStrings": false, "partialCredit": 0, "strings": ["."]}, "showpreview": true, "checkingtype": "absdiff", "scripts": {}, "checkvariablenames": false, "type": "jme", "answersimplification": "std", "marks": 2, "vsetrangepoints": 5}], "type": "gapfill", "prompt": "\n

${\\LARGE\\dfrac{\\sqrt[\\var{t}]{\\var{2^a}}*(\\var{2^b})^{\\var{c}}}{(\\var{2^d})^{1/\\var{f}}}}$

In lowest terms, the power is [[0]]

\n \n ", "showCorrectAnswer": true, "marks": 0}], "statement": "

Express the following as a power of 2, writing the power in the box provided. Write the power as a fraction or as an integer.

", "tags": ["Index Laws", "SFY0001", "checked2015", "exponents", "indices", "powers"], "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers", "!noLeadingMinus"]}, "preamble": {"css": "", "js": ""}, "type": "question", "metadata": {"notes": "", "licence": "Creative Commons Attribution 4.0 International", "description": "

Questions testing understanding of the index laws.

"}, "variablesTest": {"condition": "", "maxRuns": 100}, "advice": "\n

Write each of the numbers as a power of 2, write the n'th root as: to the power 1/n. Then apply the index laws to combine the powers. Thus \\[{\\LARGE\\sqrt[\\var{t1}]{\\var{2^{a1}}}=(2^{\\var{a1}})^{1/ \\var{t1}} =2^{\\var{a1} /\\var{t1}}=2^{\\simplify{{a1}/{t1}}}}\\] and \\[{\\LARGE\\dfrac{\\sqrt[\\var{t}]{\\var{2^a}}*(\\var{2^b})^{\\var{c}}}{(\\var{2^d})^{1/\\var{f}}}=\\dfrac{(2^{\\var{a}})^{1/ \\var{t}} * (2^{\\var{b}})^{\\var{c}}}{(2^{\\var{d}})^{1/\\var{f}}}=\\dfrac{2^{\\var{a}/\\var{t}} * 2^{\\var{b* c}}}{2^{\\var{d}/\\var{f}}}}\\] \n \\[{\\LARGE=2^{\\var{a}/\\var{t}} * 2^{\\var{b* c}}*2^{-\\var{d}/\\var{f}}=2^{\\simplify{{m}/{n}}}}.\\]\n

\n ", "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}]}]}], "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}]}