// Numbas version: finer_feedback_settings {"name": "Use Green's theorem to convert line integral to double integral, ", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"variable_groups": [], "variables": {"b": {"group": "Ungrouped variables", "templateType": "anything", "definition": "random(1..9)", "description": "", "name": "b"}, "a": {"group": "Ungrouped variables", "templateType": "anything", "definition": "random(1..9)", "description": "", "name": "a"}, "c": {"group": "Ungrouped variables", "templateType": "anything", "definition": "random(1..9)", "description": "", "name": "c"}, "f": {"group": "Ungrouped variables", "templateType": "anything", "definition": "random(1..9)", "description": "", "name": "f"}, "d": {"group": "Ungrouped variables", "templateType": "anything", "definition": "random(1..9)", "description": "", "name": "d"}, "g": {"group": "Ungrouped variables", "templateType": "anything", "definition": "random(1..9)", "description": "", "name": "g"}}, "ungrouped_variables": ["a", "c", "b", "d", "g", "f"], "question_groups": [{"pickingStrategy": "all-ordered", "questions": [], "name": "", "pickQuestions": 0}], "name": "Use Green's theorem to convert line integral to double integral, ", "functions": {}, "showQuestionGroupNames": false, "parts": [{"scripts": {}, "gaps": [{"correctAnswerFraction": false, "showPrecisionHint": false, "scripts": {}, "allowFractions": false, "type": "numberentry", "showCorrectAnswer": true, "minValue": "{(b+d)*f*g}", "maxValue": "{(b+d)*f*g}", "marks": 8}], "type": "gapfill", "showCorrectAnswer": true, "prompt": "
$I=\\;\\;$[[0]]
", "marks": 0}], "variablesTest": {"condition": "", "maxRuns": 100}, "statement": "Green’s theorem states that for a region R with boundary $\\Gamma$
\n\\[\\oint_{\\Gamma} \\left( u\\;dx+v\\;dy \\right)= \\int \\int_R\\left(\\frac{\\partial v}{\\partial x}-\\frac{\\partial u}{\\partial y}\\right)\\;dx\\;dy.\\] Use Green’s theorem to find the value of: \\[I=\\oint_{\\Gamma} \\left( \\left(\\simplify[std]{{a}x^2-{b}y} \\right)\\;dx+\\left(\\simplify[std]{{c}y^2+{d}x}\\right)\\;dy\\right)\\]
\nwhere $\\Gamma$, mapped counter-clockwise, is the closed path, starting at $(0,0)$, around the boundary of a rectangle with vertices $(0,0),\\;(\\var{f},0),\\;(\\var{f},\\var{g}),\\;(0,\\var{g})$.
", "tags": ["Calculus", "calculus", "checked2015", "closed path", "differentiation", "Green's theorem", "green's theorem", "Greens theorem", "greens theorem", "integral over a closed path", "integral over a rectangle", "integral over a region", "line integral", "MAS2104", "partial differentiation", "tested1"], "rulesets": {"std": ["all", "fractionNumbers", "!collectNumbers", "!noLeadingMinus"]}, "preamble": {"css": "", "js": ""}, "type": "question", "metadata": {"notes": "30/06/2012:
\nAdded tags. Could include Show steps on Green's theorem.
\n19/07/2012:
\nAdded Show steps on Green's Theorem.
\nAdded description.
\nChecked calculation.
\n23/07/2012:
\nAdded tags.
\nIn the question and Steps added brackets so that Green's Theorem is valid.
\nQuestion appears to be working correctly.
\n23/12/2012: (WHF)
\nNo Shoe steps on Green's theorem.
\nChecked calculations, OK. Added tested1 tag. Few minor typos - full stops added.
\n", "licence": "Creative Commons Attribution 4.0 International", "description": "
(Green’s theorem). $\\Gamma$ a rectangle, find: $\\displaystyle \\oint_{\\Gamma} \\left(ax^2-by \\right)\\;dx+\\left(cy^2+px\\right)\\;dy$.
"}, "advice": "First we identify the functions $u$ and $v$ and their required derivatives:
\n\\[\\begin{eqnarray*} u &=& \\simplify[std]{{a}x^2-{b}y} \\Rightarrow \\frac{\\partial u}{\\partial y} = \\simplify[std]{-{b}} \\\\ v&=&\\simplify[std]{{c}y^2+{d}x} \\Rightarrow \\frac{\\partial v}{\\partial x} = \\simplify[std]{{d}}\\end{eqnarray*}\\]
\nHence: \\[\\frac{\\partial v}{\\partial x}-\\frac{\\partial u}{\\partial y}=\\simplify[std]{{d}-{-b}}=\\var{d+b}.\\]
\n
So, using Green’s Theorem, the integral $I$ becomes:
\\[\\begin{eqnarray*} I&=&\\int \\int_R\\left(\\frac{\\partial v}{\\partial x}-\\frac{\\partial u}{\\partial y}\\right)\\;dx\\;dy\\\\ &=&\\int \\int_R \\var{d+b}\\;dx\\;dy = \\var{d+b}\\int \\int_R dx\\;dy\\\\ &=&\\var{d+b}\\times \\textrm{Area of }R. \\end{eqnarray*}\\]
\nNow the region $R$ is a rectangle of size $\\var{f}$ by $\\var{g}$. Hence:
\n\\[\\begin{eqnarray*} I&=&\\var{b+d}\\times \\var{f} \\times \\var{g}\\\\ &=& \\var{(b+d)*f*g}. \\end{eqnarray*} \\]
", "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}]}]}], "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}]}