// Numbas version: exam_results_page_options {"name": "Identify correct parametric representation of a curve", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"parts": [{"displayType": "radiogroup", "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "matrix": [1, 0, 0, 0], "choices": ["

{formcorrectchoice}, $\\var{range[0]}\\leqslant t\\leqslant\\var{range[1]}$

", "

{formincorrectchoice1}, $\\var{range[0]}\\leqslant t\\leqslant\\var{range[1]}$

", "

{formincorrectchoice2}, $\\var{range[0]}\\leqslant t\\leqslant\\var{range[1]}$

", "

{formincorrectchoice3}, $\\var{range[0]}\\leqslant t\\leqslant\\var{range[1]}$

"], "prompt": "

What is the correct parametric representation of the curve?

", "unitTests": [], "variableReplacements": [], "distractors": ["", "", "", ""], "shuffleChoices": true, "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "scripts": {}, "maxMarks": 0, "type": "1_n_2", "minMarks": 0, "showCorrectAnswer": true, "displayColumns": 1, "marks": 0}, {"displayType": "radiogroup", "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "matrix": [1, 0], "choices": ["

{dircorrectchoice}

", "

{dirincorrectchoice}

"], "prompt": "

In which direction is the curve traversed?

", "unitTests": [], "variableReplacements": [], "distractors": ["", ""], "shuffleChoices": true, "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "scripts": {}, "maxMarks": 0, "type": "1_n_2", "minMarks": 0, "showCorrectAnswer": true, "displayColumns": 1, "marks": 0}], "variables": {"g1": {"group": "Ungrouped variables", "templateType": "anything", "definition": "switch (\n index=0, random(1..9)*sign(random(-1,1)),\n false\n )", "name": "g1", "description": ""}, "formincorrectchoice3": {"group": "Ungrouped variables", "templateType": "anything", "definition": "switch (\n index=0, '$t\\\\rightarrow\\\\pmatrix{t,t^3}$',\n index=1, '$t\\\\rightarrow\\\\pmatrix{\\\\simplify{{f1}*t},\\\\simplify{t^{d1}}}$',\n index=2, '$t\\\\rightarrow\\\\pmatrix{\\\\simplify{{f1}*t},\\\\simplify{t^{d1}}}$',\n index=3, '$t\\\\rightarrow\\\\pmatrix{\\\\simplify{{f1}*t},\\\\arctan(t)}$',\n index=4, '$t\\\\rightarrow\\\\pmatrix{\\\\simplify{{f1}*t},\\\\tan(t)}$',\n index=5, '$t\\\\rightarrow\\\\pmatrix{\\\\simplify{{f1}*t},1}$',\n index=6, '$t\\\\rightarrow\\\\pmatrix{\\\\simplify{{f1}*t^3},3}$',\n index=7, '$t\\\\rightarrow\\\\pmatrix{\\\\simplify{{f1}*t},\\\\sin(3)}$',\n index=8, '$t\\\\rightarrow\\\\pmatrix{t,t^2}$',\n index=9, '$t\\\\rightarrow\\\\pmatrix{t,3t}$',\n index=10, '$t\\\\rightarrow\\\\pmatrix{t,\\\\sin(t)}$',\n index=11, '$t\\\\rightarrow\\\\pmatrix{t^2,t^\\\\frac{5}{3}}$',\n index=12, '$t\\\\rightarrow\\\\pmatrix{t,\\\\cos(t)}$',\n index=13, '$t\\\\rightarrow\\\\pmatrix{t^2,\\\\sqrt{t}}$',\n index=14, '$t\\\\rightarrow\\\\pmatrix{\\\\cos(t),t^\\\\frac{1}{2}}$',\n index=15, '$t\\\\rightarrow\\\\pmatrix{\\\\simplify{{f1}*t},1}$',\n index=16, '$t\\\\rightarrow\\\\pmatrix{\\\\simplify{{f1}*t},t}$',\n index=17, '$t\\\\rightarrow\\\\pmatrix{\\\\simplify{{f1}*t},t^2}$',\n index=18, '$t\\\\rightarrow\\\\pmatrix{\\\\simplify{{f1}*t},t^4}$',\n index=19, '$t\\\\rightarrow\\\\pmatrix{\\\\simplify{{f1}*t*cos(3t)},t^4}$',\n false\n )", "name": "formincorrectchoice3", "description": ""}, "e1": {"group": "Ungrouped variables", "templateType": "anything", "definition": "switch (\n index=0 or index=5 or index=7 or index=11 or index=13 or index=14 or index=15 or index=16 or index=17, random(1..9)*sign(random(-1,1)),\n index=6 or index=9 or index=10 or index=12, random(1..9),\n false\n )", "name": "e1", "description": ""}, "dirincorrectchoice": {"group": "Ungrouped variables", "templateType": "anything", "definition": "switch (\n index=0, 'From $\\\\pmatrix{1,1}$ to $\\\\pmatrix{-1,-1}$',\n index=1, 'From $\\\\pmatrix{1,5}$ to $\\\\pmatrix{0,\\\\infty}$',\n index=2, 'From $\\\\pmatrix{2,1.11}$ to $\\\\pmatrix{-5,-1.37}$',\n index=3, 'From $\\\\pmatrix{\\\\frac{\\\\pi}{2},\\\\infty}$ to $\\\\pmatrix{-\\\\frac{\\\\pi}{2},-\\\\infty}$',\n index=4, 'From $\\\\pmatrix{1,-1}$ to $\\\\pmatrix{-2,0.86}$',\n index=5, 'From $\\\\pmatrix{3,-7}$ to $\\\\pmatrix{0,0}$',\n index=6, 'From $\\\\pmatrix{-1,1}$ to $\\\\pmatrix{1,-1}$',\n index=7, 'From $\\\\pmatrix{27,-0.65}$ to $\\\\pmatrix{0,0}$',\n index=8, 'From $\\\\pmatrix{2,0}$ to $\\\\pmatrix{-2,0}$',\n index=9, 'From $\\\\pmatrix{15,5}$ to $\\\\pmatrix{3,1}$',\n index=10, 'From $\\\\pmatrix{-1,1}$ to $\\\\pmatrix{-1,-1}$',\n index=11, 'From $\\\\pmatrix{2,2.83}$ to $\\\\pmatrix{1,1}$',\n index=12, 'From $\\\\pmatrix{1,-1}$ to $\\\\pmatrix{-1,-1}$',\n index=13, 'From $\\\\pmatrix{9,0.14}$ to $\\\\pmatrix{0,0}$',\n index=14, 'From $\\\\pmatrix{0,-3}$ to $\\\\pmatrix{0,3}$',\n index=15, 'From $\\\\pmatrix{1,2}$ to $\\\\pmatrix{1,0}$',\n index=16, 'From $\\\\pmatrix{0,0}$ to $\\\\pmatrix{1,1}$ and then back to $\\\\pmatrix{0,0}$',\n index=17, 'Counter-clockwise',\n index=18, 'From $\\\\pmatrix{1,1}$ to $\\\\pmatrix{1,-1}$',\n index=19, 'From $\\\\pmatrix{4.63,3.53}$ to $\\\\pmatrix{4.63,-3.53}$',\n false\n )", "name": "dirincorrectchoice", "description": ""}, "dircorrectchoice": {"group": "Ungrouped variables", "templateType": "anything", "definition": "switch (\n index=0, 'From $\\\\pmatrix{-1,-1}$ to $\\\\pmatrix{1,1}$',\n index=1, 'From $\\\\pmatrix{0,\\\\infty}$ to $\\\\pmatrix{1,5}$',\n index=2, 'From $\\\\pmatrix{-5,-1.37}$ to $\\\\pmatrix{2,1.11}$',\n index=3, 'From $\\\\pmatrix{-\\\\frac{\\\\pi}{2},-\\\\infty}$ to $\\\\pmatrix{\\\\frac{\\\\pi}{2},\\\\infty}$',\n index=4, 'From $\\\\pmatrix{-2,0.86}$ to $\\\\pmatrix{1,-1}$',\n index=5, 'From $\\\\pmatrix{0,0}$ to $\\\\pmatrix{3,-7}$',\n index=6, 'From $\\\\pmatrix{1,-1}$ to $\\\\pmatrix{-1,1}$',\n index=7, 'From $\\\\pmatrix{0,0}$ to $\\\\pmatrix{27,-0.65}$',\n index=8, 'From $\\\\pmatrix{-2,0}$ to $\\\\pmatrix{2,0}$',\n index=9, 'From $\\\\pmatrix{3,1}$ to $\\\\pmatrix{15,5}$',\n index=10, 'From $\\\\pmatrix{-1,-1}$ to $\\\\pmatrix{-1,1}$',\n index=11, 'From $\\\\pmatrix{1,1}$ to $\\\\pmatrix{2,2.83}$',\n index=12, 'From $\\\\pmatrix{-1,-1}$ to $\\\\pmatrix{1,-1}$',\n index=13, 'From $\\\\pmatrix{0,0}$ to $\\\\pmatrix{9,0.14}$',\n index=14, 'From $\\\\pmatrix{0,3}$ to $\\\\pmatrix{0,-3}$',\n index=15, 'From $\\\\pmatrix{1,0}$ to $\\\\pmatrix{1,2}$',\n index=16, 'From $\\\\pmatrix{1,1}$ to $\\\\pmatrix{0,0}$ and then back to $\\\\pmatrix{1,1}$',\n index=17, 'Clockwise',\n index=18, 'From $\\\\pmatrix{1,-1}$ to $\\\\pmatrix{1,1}$',\n index=19, 'From $\\\\pmatrix{4.63,-3.53}$ to $\\\\pmatrix{4.63,3.53}$',\n false\n )", "name": "dircorrectchoice", "description": ""}, "formcorrectchoice": {"group": "Ungrouped variables", "templateType": "anything", "definition": "switch (\n index=0, '$t\\\\rightarrow\\\\pmatrix{t^3,t}$',\n index=1, '$t\\\\rightarrow\\\\pmatrix{t,\\\\frac{5}{t}}$',\n index=2, '$t\\\\rightarrow\\\\pmatrix{t,\\\\arctan(t)}$',\n index=3, '$t\\\\rightarrow\\\\pmatrix{t,\\\\tan(t)}$',\n index=4, '$t\\\\rightarrow\\\\pmatrix{t,\\\\cot(\\\\frac{t}{2}+5)}$',\n index=5, '$t\\\\rightarrow\\\\pmatrix{3t,-7t}$',\n index=6, '$t\\\\rightarrow\\\\pmatrix{-t^3,t}$',\n index=7, '$t\\\\rightarrow\\\\pmatrix{t^3,\\\\sin(-5t)}$',\n index=8, '$t\\\\rightarrow\\\\pmatrix{2\\\\sin(t),-2\\\\cos(t)}$',\n index=9, '$t\\\\rightarrow\\\\pmatrix{3t,t}$',\n index=10, '$t\\\\rightarrow\\\\pmatrix{-t^2,t}$',\n index=11, '$t\\\\rightarrow\\\\pmatrix{t,t^\\\\frac{3}{2}}$',\n index=12, '$t\\\\rightarrow\\\\pmatrix{t,-t^2}$',\n index=13, '$t\\\\rightarrow\\\\pmatrix{t^2,\\\\sin(t)}$',\n index=14, '$t\\\\rightarrow\\\\pmatrix{3\\\\cos(t),-3\\\\sin(t)}$',\n index=15, '$t\\\\rightarrow\\\\pmatrix{1,2t}$',\n index=16, '$t\\\\rightarrow\\\\pmatrix{t^2,t^4}$',\n index=17, '$t\\\\rightarrow\\\\pmatrix{5\\\\sin(t),3\\\\cos(t)}$',\n index=18, '$t\\\\rightarrow\\\\pmatrix{t^2,t^3}$',\n index=19, '$t\\\\rightarrow\\\\pmatrix{3\\\\cosh(t),3\\\\sinh(t)}$',\n false\n )", "name": "formcorrectchoice", "description": ""}, "formincorrectchoice1": {"group": "Ungrouped variables", "templateType": "anything", "definition": "switch (\n index=0, '$t\\\\rightarrow\\\\pmatrix{\\\\simplify{t^{c1}},\\\\simplify{t^{d1}}}$',\n index=1, '$t\\\\rightarrow\\\\pmatrix{\\\\frac{5}{t},\\\\simplify{{c1}*t}}$',\n index=2, '$t\\\\rightarrow\\\\pmatrix{-\\\\tan(t),\\\\simplify{{c1}*t^2}}$',\n index=3, '$t\\\\rightarrow\\\\pmatrix{\\\\sin(t),\\\\simplify{{c1}*t}}$',\n index=4, '$t\\\\rightarrow\\\\pmatrix{\\\\sin(t),\\\\cot(t)}$',\n index=5, '$t\\\\rightarrow\\\\pmatrix{3+\\\\simplify{t^{c1}},t}$',\n index=6, '$t\\\\rightarrow\\\\pmatrix{\\\\simplify{5-t^{c1}},t^5}$',\n index=7, '$t\\\\rightarrow\\\\pmatrix{t^2,\\\\sin(5t)}$',\n index=8, '$t\\\\rightarrow\\\\pmatrix{4\\\\cos(t),4\\\\sin(t)}$',\n index=9, '$t\\\\rightarrow\\\\pmatrix{t,t}$',\n index=10, '$t\\\\rightarrow\\\\pmatrix{t,t^2}$',\n index=11, '$t\\\\rightarrow\\\\pmatrix{\\\\simplify{t^{c1}},\\\\simplify{t^{d1}+t}}$',\n index=12, '$t\\\\rightarrow\\\\pmatrix{t,t^2}$',\n index=13, '$t\\\\rightarrow\\\\pmatrix{\\\\simplify{t^{c1}+t},\\\\simplify{t^{d1}}}$',\n index=14, '$t\\\\rightarrow\\\\pmatrix{\\\\simplify{t^{c1}+t},t^2}$',\n index=15, '$t\\\\rightarrow\\\\pmatrix{3+\\\\simplify{t^{c1}},t}$',\n index=16, '$t\\\\rightarrow\\\\pmatrix{\\\\simplify{t^{c1}},t+\\\\sin(t)}$',\n index=17, '$t\\\\rightarrow\\\\pmatrix{\\\\cos(5t),3\\\\sin(t)}$',\n index=18, '$t\\\\rightarrow\\\\pmatrix{\\\\simplify{t^{c1}},t}$',\n index=19, '$t\\\\rightarrow\\\\pmatrix{3\\\\cos(t),3\\\\sin(t)}$',\n false\n )", "name": "formincorrectchoice1", "description": ""}, "a1": {"group": "Ungrouped variables", "templateType": "anything", "definition": "switch (\n index=0, -1,\n index=1, 0,\n index=2, -5,\n index=3, '$-\\\\frac{\\\\pi}{2}$',\n index=4, -2,\n index=5, 0,\n index=6, -1,\n index=7, 0,\n index=8, '$-\\\\frac{\\\\pi}{2}$',\n index=9, 1,\n index=10, -1,\n index=11, 1,\n index=12, -1,\n index=13, 0,\n index=14, '$-\\\\frac{\\\\pi}{2}$',\n index=15, 0,\n index=16, -1,\n index=17, '$-\\\\pi$',\n index=18, -1,\n index=19, -1,\n false\n )", "name": "a1", "description": ""}, "d1": {"group": "Ungrouped variables", "templateType": "anything", "definition": "switch (\n index=0 or index=11, random(1,2,4,5),\n index=1 or index=2 or index=3, random(1..5),\n index=4, random(2..5),\n index=13 or index=16, -random(1..9),\n false\n )", "name": "d1", "description": ""}, "formincorrectchoice2": {"group": "Ungrouped variables", "templateType": "anything", "definition": "switch (\n index=0, '$t\\\\rightarrow\\\\pmatrix{\\\\simplify{{e1}*t^{f1}+{g1}},\\\\sin(t)}$',\n index=1, '$t\\\\rightarrow\\\\pmatrix{t^2,t}$',\n index=2, '$t\\\\rightarrow\\\\pmatrix{t^3,t^2}$',\n index=3, '$t\\\\rightarrow\\\\pmatrix{\\\\tan(t),t}$',\n index=4, '$t\\\\rightarrow\\\\pmatrix{\\\\simplify{t^{d1-1}},\\\\simplify{t^{d1}}}$',\n index=5, '$t\\\\rightarrow\\\\pmatrix{\\\\simplify{{e1}*t},t}$',\n index=6, '$t\\\\rightarrow\\\\pmatrix{\\\\simplify{{e1}*t^3},t}$',\n index=7, '$t\\\\rightarrow\\\\pmatrix{\\\\simplify{{e1}*cos(t)},t}$',\n index=8, '$t\\\\rightarrow\\\\pmatrix{\\\\mathrm{e}^t,\\\\sin(2t)}$',\n index=9, '$t\\\\rightarrow\\\\pmatrix{\\\\simplify{{e1}*t^3},t}$',\n index=10, '$t\\\\rightarrow\\\\pmatrix{\\\\simplify{{e1}*t^3},t^4}$',\n index=11, '$t\\\\rightarrow\\\\pmatrix{\\\\simplify{{e1}*t^{f1}},\\\\cos(t)}$',\n index=12, '$t\\\\rightarrow\\\\pmatrix{\\\\simplify{{e1}*t},t^4}$',\n index=13, '$t\\\\rightarrow\\\\pmatrix{\\\\simplify{{e1}*t^{f1}},\\\\cos(t)}$',\n index=14, '$t\\\\rightarrow\\\\pmatrix{\\\\simplify{{e1}*t^{f1}},\\\\cos(t)\\\\sin(t)}$',\n index=15, '$t\\\\rightarrow\\\\pmatrix{\\\\mathrm{e}^{\\\\simplify{{e1}*t}},t}$',\n index=16, '$t\\\\rightarrow\\\\pmatrix{\\\\mathrm{e}^{\\\\simplify{{e1}*t}},\\\\simplify{t^{d1}}}$',\n index=17, '$t\\\\rightarrow\\\\pmatrix{\\\\mathrm{e}^{\\\\simplify{{e1}*t}},\\\\sin(3t)}$',\n index=18, '$t\\\\rightarrow\\\\pmatrix{t^3,t^2}$',\n index=19, '$t\\\\rightarrow\\\\pmatrix{\\\\sqrt{t},\\\\mathrm{e}^t}$',\n false\n )", "name": "formincorrectchoice2", "description": ""}, "b1": {"group": "Ungrouped variables", "templateType": "anything", "definition": "switch (\n index=0, 1,\n index=1, 1,\n index=2, 2,\n index=3, '$\\\\frac{\\\\pi}{2}$',\n index=4, 1,\n index=5, 1,\n index=6, 1,\n index=7, 3,\n index=8, '$\\\\frac{\\\\pi}{2}$',\n index=9, 5,\n index=10, 1,\n index=11, 2,\n index=12, 1,\n index=13, 3,\n index=14, '$\\\\frac{\\\\pi}{2}$',\n index=15, 1,\n index=16, 1,\n index=17, '$\\\\pi$',\n index=18, 1,\n index=19, 1,\n false\n )", "name": "b1", "description": ""}, "c1": {"group": "Ungrouped variables", "templateType": "anything", "definition": "switch (\n index=0, random(1,2,4),\n index=1 or index=5 or index=6 or index=13 or index=14 or index=15 or index=16 or index=18, random(2..9),\n index=2 or index=3, random(1..9),\n index=4, random(1..3),\n index=11, -random(1,2,4),\n false\n )", "name": "c1", "description": ""}, "range": {"group": "Ungrouped variables", "templateType": "anything", "definition": "[a1,b1]", "name": "range", "description": ""}, "index": {"group": "Ungrouped variables", "templateType": "anything", "definition": "random(0..19)", "name": "index", "description": ""}, "image": {"group": "Ungrouped variables", "templateType": "anything", "definition": "'parametric-'+index+'.png'", "name": "image", "description": ""}, "f1": {"group": "Ungrouped variables", "templateType": "anything", "definition": "switch (\n index=0 or index=11, random(1..9),\n index=1 or index=2 or index=3 or index=4 or index=19, 3*random(1..3),\n index=5 or index=6 or index=7 or index=13 or index=14 or index=15 or index=16 or index=17 or index=18, random(1..4),\n false\n )", "name": "f1", "description": ""}}, "ungrouped_variables": ["index", "formcorrectchoice", "g1", "f1", "image", "range", "a1", "dirincorrectchoice", "formincorrectchoice3", "formincorrectchoice1", "formincorrectchoice2", "b1", "c1", "e1", "dircorrectchoice", "d1"], "name": "Identify correct parametric representation of a curve", "functions": {"show": {"type": "html", "language": "javascript", "definition": "return $('');", "parameters": [["n", "number"]]}}, "variable_groups": [], "variablesTest": {"condition": "", "maxRuns": 100}, "statement": "

{show(index)}

\n

You are given the following parametric representation of a curve.

\n

{image('resources/images/'+image)}

", "tags": ["checked2015"], "rulesets": {}, "preamble": {"css": "", "js": ""}, "type": "question", "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "

Determine the correct parametric representation of a given curve.  Curve is randomly chosen from a set of 20.

\n

The graph of the curve was not displayed on my machine.

"}, "extensions": [], "advice": "
\n

a)

\n

The correct answer in this case is $t\\rightarrow\\pmatrix{t^3,t}$, $\\var{range[0]}\\leqslant t\\leqslant\\var{range[1]}$.

\n

To see this note that $x=t^3$ and $y=t$, therefore $x=y^3$ or $y=x^\\frac{1}{3}$.  Substituting the values of $t=-1$ and $t=1$ for $x$ and $y$ reveals the end-points of the curve.

\n

Also, $\\frac{\\mathrm{d}y}{\\mathrm{d}x}=\\frac{1}{3}x^{-\\frac{2}{3}}$, which diverges at the origin, implying that the tangent to the curve is vertical there.

\n

 

\n

b)

\n

The curve is traversed from $\\pmatrix{-1,-1}$ to $\\pmatrix{1,1}$, because $t=-1$ implies $x=-1$ and $y=-1$, and $t=1$ implies $x=1$ and $y=1$.

\n
\n
\n

a)

\n

The correct answer in this case is $t\\rightarrow\\pmatrix{t,\\frac{5}{t}}$, $\\var{range[0]}\\leqslant t\\leqslant\\var{range[1]}$.

\n

To see this note that $x=t$ and $y=\\frac{5}{t}$, therefore $y=\\frac{5}{x}$ or $xy=5$.  This is the equation of a rectangular hyperbola in the right half-plane, where the asymptotes coincide with the $x$- and $y$-axes.  You can check this by taking the limit of $y=\\frac{5}{x}$ as $x\\rightarrow 0$.  This limit diverges.  Substituting values of $t$ for $x$ and $y$ in the given range determines points along the curve.

\n

 

\n

b)

\n

The curve is traversed from $\\pmatrix{0,\\infty}$ to $\\pmatrix{1,5}$, because $t=0$ implies $x=0$ and $y\\rightarrow\\infty$, and $t=1$ implies $x=1$ and $y=5$.

\n
\n
\n

a)

\n

The correct answer in this case is $t\\rightarrow\\pmatrix{t,\\arctan(t)}$, $\\var{range[0]}\\leqslant t\\leqslant\\var{range[1]}$.

\n

To see this note that $x=t$ and $y=\\arctan(t)$, therefore $y=\\arctan(x)$. Substituting values of $t$ for $x$ and $y$ in the given range determines points along the curve.

\n

Since $x=t$, the range of $x$ coincides with the range of $t$, and so $-5\\leqslant t\\leqslant 2$.

\n

 

\n

b)

\n

The curve is traversed from $\\pmatrix{-5,-1.37}$ to $\\pmatrix{2,1.11}$, because $t=-5$ implies $x=-5$ and $y\\approx -1.37$, and $t=2$ implies $x=2$ and $y\\approx 1.11$.

\n
\n
\n

a)

\n

The correct answer in this case is $t\\rightarrow\\pmatrix{t,\\tan(t)}$, $\\var{range[0]}\\leqslant t\\leqslant\\var{range[1]}$.

\n

To see this note that $x=t$ and $y=\\tan(t)$, therefore $y=\\tan(x)$. Substituting values of $t$ for $x$ and $y$ in the given range determines points along the curve.

\n

The lines $x=-\\frac{\\pi}{2}$ and $x=\\frac{\\pi}{2}$ are asymptotes for $y=\\tan(x)$.

\n

 

\n

b)

\n

The curve is traversed from $\\pmatrix{-\\frac{\\pi}{2},-\\infty}$ to $\\pmatrix{\\frac{\\pi}{2},\\infty}$, because $t=-\\frac{\\pi}{2}$ implies $x=-\\frac{\\pi}{2}$ and $y\\rightarrow -\\infty$, and $t=\\frac{\\pi}{2}$ implies $x=\\frac{\\pi}{2}$ and $y\\rightarrow \\infty$.

\n
\n
\n

a)

\n

The correct answer in this case is $t\\rightarrow\\pmatrix{t,\\cot(\\frac{t}{2}+5)}$, $\\var{range[0]}\\leqslant t\\leqslant\\var{range[1]}$.

\n

To see this note that $x=t$ and $y=\\cot(\\frac{t}{2}+5)$, therefore $y=\\cot(\\frac{x}{2}+5)$. Substituting values of $t$ for $x$ and $y$ in the given range determines points along the curve.

\n

Since $x=t$, the range of $t$ coincides with the range of $x$, and so $-2\\leqslant x\\leqslant 1$.

\n

 

\n

b)

\n

The curve is traversed from $\\pmatrix{-2,0.86}$ to $\\pmatrix{1,-1}$, because $t=-2$ implies $x=-2$ and $y\\approx 0.86$, and $t=1$ implies $x=1$ and $y\\approx -1$.

\n
\n
\n

a)

\n

The correct answer in this case is $t\\rightarrow\\pmatrix{3t,-7t}$, $\\var{range[0]}\\leqslant t\\leqslant\\var{range[1]}$.

\n

To see this note that $x=3t$ and $y=7t$, therefore $y=-\\frac{7}{3}x$, and this is the equation of a straight line with gradient $-7/3$, passing through the origin.  In addition, substituting values of $t$ for $x$ and $y$ in the given range determines points along the curve.

\n

 

\n

b)

\n

The curve is traversed from $\\pmatrix{0,0}$ to $\\pmatrix{3,-7}$, because $t=0$ implies $x=0$ and $y=0$, and $t=1$ implies $x=3$ and $y=-7$.

\n
\n
\n

a)

\n

The correct answer in this case is $t\\rightarrow\\pmatrix{-t^3,t}$, $\\var{range[0]}\\leqslant t\\leqslant\\var{range[1]}$.

\n

To see this note that $x=-t^3$ and $y=t$, therefore $x=-y^3$ or $y=-x^\\frac{1}{3}$.  Also note that $\\frac{\\mathrm{d}y}{\\mathrm{d}x}=-\\frac{1}{3}x^{-\\frac{2}{3}}$, which diverges at the origin, so the tangent to the curve is vertical there.  In addition, substituting values of $t$ for $x$ and $y$ in the given range determines points along the curve.

\n

 

\n

b)

\n

The curve is traversed from $\\pmatrix{1,-1}$ to $\\pmatrix{-1,1}$, because $t=-1$ implies $x=1$ and $y=-1$, and $t=1$ implies $x=-1$ and $y=1$.

\n
\n
\n

a)

\n

The correct answer in this case is $t\\rightarrow\\pmatrix{t^3,\\sin(-5t)}$, $\\var{range[0]}\\leqslant t\\leqslant\\var{range[1]}$.

\n

To see this note that $x=t^3$ and $y=\\sin(-5t)$, therefore $y=\\sin\\left(-5x^\\frac{1}{3}\\right)$.  The curve is a non-uniformly stretched sinusoid, due to the term $x^\\frac{1}{3}$, and the stretching is stronger at larger $x$, because $x=t^3$ grows faster as $t$ increases.

\n

The values of $x$ range from $0$ to $27$ because $t$ ranges from $0$ to $3$ and $x=t^3$.  In addition, substituting values of $t$ for $x$ and $y$ in the given range determines points along the curve.

\n

 

\n

b)

\n

The curve is traversed from $\\pmatrix{0,0}$ to $\\pmatrix{27,-0.65}$, because $t=0$ implies $x=0$ and $y=0$, and $t=3$ implies $x=27$ and $y\\approx -0.65$.

\n
\n
\n

a)

\n

The correct answer in this case is $t\\rightarrow\\pmatrix{2\\sin(t),-2\\cos(t)}$, $\\var{range[0]}\\leqslant t\\leqslant\\var{range[1]}$.

\n

To see this note that $x=2\\sin(t)$ and $y=-2\\cos(t)$, therefore $x^2+y^2=4$, and this is the equation for a circle of radius $2$, centred at the origin.  Substituting values of $t$ for $x$ and $y$ in the given range determines points along the curve.

\n

In addition, since $-\\frac{\\pi}{2}\\leqslant t\\leqslant\\frac{\\pi}{2}$, the curve is only defined in the lower half of the $\\pmatrix{x,y}$-plane.

\n

 

\n

b)

\n

The curve is traversed from $\\pmatrix{-2,0}$ to $\\pmatrix{2,0}$, because $t=-\\frac{\\pi}{2}$ implies $x=-2$ and $y=0$, and $t=\\frac{\\pi}{2}$ implies $x=2$ and $y=0$.

\n
\n
\n

a)

\n

The correct answer in this case is $t\\rightarrow\\pmatrix{3t,t}$, $\\var{range[0]}\\leqslant t\\leqslant\\var{range[1]}$.

\n

To see this note that $x=3t$ and $y=t$, therefore $y=\\frac{1}{3}x$, which is the equation of a straight line, with gradient $1/3$, passing through the origin.  Since the range of $t$ given does not allow $x$ and $y$ to be equal to zero, the segment of the line shown does not include the origin.  In addition, substituting values of $t$ for $x$ and $y$ in the given range determines points along the curve.

\n

 

\n

b)

\n

The curve is traversed from $\\pmatrix{3,1}$ to $\\pmatrix{15,1}$, because $t=1$ implies $x=3$ and $y=1$, and $t=5$ implies $x=15$ and $y=5$.

\n
\n
\n

a)

\n

The correct answer in this case is $t\\rightarrow\\pmatrix{-t^2,t}$, $\\var{range[0]}\\leqslant t\\leqslant\\var{range[1]}$.

\n

To see this note that $x=-t^2$ and $y=t$, therefore $x=-y^2$, which is only defined in the left half-plane, and the derivative at the origin is divergent, so the tangent to the curve is vertical there.  In addition, substituting values of $t$ for $x$ and $y$ in the given range determines points along the curve.

\n

 

\n

b)

\n

The curve is traversed from $\\pmatrix{-1,-1}$ to $\\pmatrix{-1,1}$, because $t=-1$ implies $x=-1$ and $y=-1$, and $t=1$ implies $x=-1$ and $y=1$.

\n
\n
\n

a)

\n

The correct answer in this case is $t\\rightarrow\\pmatrix{t,t^\\frac{3}{2}}$, $\\var{range[0]}\\leqslant t\\leqslant\\var{range[1]}$.

\n

To see this note that $x=t$ and $y=t^\\frac{3}{2}$, therefore $y=x^\\frac{3}{2}$.  Substituting values of $t$ for $x$ and $y$ in the given range determines points along the curve.

\n

 

\n

b)

\n

The curve is traversed from $\\pmatrix{1,1}$ to $\\pmatrix{2,2.83}$, because $t=1$ implies $x=1$ and $y=1$, and $t=2$ implies $x=2$ and $y\\approx 2.83$.

\n
\n
\n

a)

\n

The correct answer in this case is $t\\rightarrow\\pmatrix{t,-t^2}$, $\\var{range[0]}\\leqslant t\\leqslant\\var{range[1]}$.

\n

To see this note that $x=t$ and $y=-t^2$, therefore $y=-x^2$, which is only defined in the lower half-plane, and the derivative at the origin is zero, corresponding to a maximum.

\n

Since $x=t$, the range of $x$ coincides with the range of $t$.

\n

In addition, substituting values of $t$ for $x$ and $y$ in the given range determines points along the curve.

\n

\n

b)

\n

The curve is traversed from $\\pmatrix{-1,-1}$ to $\\pmatrix{1,-1}$, because $t=-1$ implies $x=-1$ and $y=-1$, and $t=1$ implies $x=1$ and $y=-1$.

\n
\n
\n

a)

\n

The correct answer in this case is $t\\rightarrow\\pmatrix{t^2,\\sin(t)}$, $\\var{range[0]}\\leqslant t\\leqslant\\var{range[1]}$.

\n

To see this note that $x=t^2$ and $y=\\sin(t)$, therefore $y=\\sin(\\sqrt{x})$.  Substituting values of $t$ for $x$ and $y$ in the given range determines points along the curve.

\n

The curve is part of a sinusoid that has been stretched in the $x$-direction due to the term $\\sqrt{x}$, with the stretching stronger at larger $x$, because $x=t^2$ grows faster as $t$ increases.

\n

Also note that $\\frac{\\mathrm{d}y}{\\mathrm{d}x}=\\frac{\\cos(\\sqrt{x})}{2\\sqrt{x}}$, so the curve has a maximum where $\\sqrt{x}=\\frac{1}{2}(2n+1)\\pi$, or $x=\\frac{1}{4}(2n+1)^2\\pi^2$, for $n=0,1,2,\\ldots$.  Given the range of $t$, the only valid value of $x$ is when $n=0$, so the curve has a maximum at $x=\\frac{\\pi^2}{4}$.

\n

Also note that $\\frac{\\mathrm{d}y}{\\mathrm{d}x}$ diverges at the origin, so the curve is vertical there.

\n

\n

b)

\n

The curve is traversed from $\\pmatrix{0,0}$ to $\\pmatrix{9,0.14}$, because $t=0$ implies $x=0$ and $y=0$, and $t=3$ implies $x=9$ and $y\\approx 0.14$.

\n
\n
\n

a)

\n

The correct answer in this case is $t\\rightarrow\\pmatrix{3\\cos(t),-3\\sin(t)}$, $\\var{range[0]}\\leqslant t\\leqslant\\var{range[1]}$.

\n

To see this note that $x=3\\cos(t)$ and $y=-3\\sin(t)$, therefore $x^2+y^2=9$, which is the equation of a circle, centred at the origin, having radius $3$.  From the range of $t$ we can determine that the range of valid $x$ and $y$ values corresponds to the right half-plane.

\n

\n

b)

\n

The curve is traversed from $\\pmatrix{0,3}$ to $\\pmatrix{0,-3}$, because $t=-\\frac{\\pi}{2}$ implies $x=0$ and $y=3$, and $t=\\frac{\\pi}{2}$ implies $x=0$ and $y=-3$.

\n
\n
\n

a)

\n

The correct answer in this case is $t\\rightarrow\\pmatrix{1,2t}$, $\\var{range[0]}\\leqslant t\\leqslant\\var{range[1]}$.

\n

To see this note that $x=1$ and $y=2t$ therefore, for all values of $t$, $x=1$ and $y$ increases with $t$.  The graph is therefore a segment of a straight line.

\n

\n

b)

\n

The curve is traversed from $\\pmatrix{1,0}$ to $\\pmatrix{1,2}$, because $t=0$ implies $x=1$ and $y=0$, and $t=1$ implies $x=1$ and $y=2$.

\n
\n
\n

a)

\n

The correct answer in this case is $t\\rightarrow\\pmatrix{t^2,t^4}$, $\\var{range[0]}\\leqslant t\\leqslant\\var{range[1]}$.

\n

To see this note that $x=t^2$ and $y=t^4$, therefore $y=x^2$.  Substituting values of $t$ for $x$ and $y$ in the given range determines points along the curve.

\n

Also, note that $\\frac{\\mathrm{d}y}{\\mathrm{d}x}=2x$, which is zero at the origin, so the tangent to the curve is horizontal there.

\n

\n

b)

\n

The curve is traversed from $\\pmatrix{1,1}$ to $\\pmatrix{0,0}$, then back to $\\pmatrix{1,1}$, because $t=-1$ implies $x=1$ and $y=1$, and $t=1$ also implies $x=1$ and $y=1$, but $t=0$ implies $x=0$ and $y=0$.

\n
\n
\n

a)

\n

The correct answer in this case is $t\\rightarrow\\pmatrix{5\\sin(t),3\\cos(t)}$, $\\var{range[0]}\\leqslant t\\leqslant\\var{range[1]}$.

\n

To see this note that $x=5\\sin(t)$ and $y=3\\cos(t)$, therefore $\\left(\\frac{x}{5}\\right)^2+\\left(\\frac{y}{3}\\right)^2=1$, which is the equation of an ellipse, with semi-major axis equal to $5$, and semi-minor axis equal to $3$.

\n

Since $t$ takes values from $-\\pi$ to $\\pi$, the curve is defined over the entire $\\pmatrix{x,y}$-plane.

\n

\n

b)

\n

The curve is traversed in a clockwise direction.  Substituting $t=-\\pi$ for $x$ and $y$ gives $x=0$ and $y=-3$.  Then choosing $t=-\\frac{\\pi}{2}$, say, gives $x=-5$ and $y=0$, which is $90^\\circ$ clockwise from $\\pmatrix{0,-3}$.

\n
\n
\n

a)

\n

The correct answer in this case is $t\\rightarrow\\pmatrix{t^2,t^3}$, $\\var{range[0]}\\leqslant t\\leqslant\\var{range[1]}$.

\n

To see this note that $x=t^2$ and $y=t^3$, therefore $y=x^\\frac{3}{2}$.  Substituting values of $t$ for $x$ and $y$ in the given range determines points along the curve.

\n

Also, note that $\\frac{\\mathrm{d}y}{\\mathrm{d}x}=\\frac{3}{2}x^\\frac{1}{2}$, which is zero at the origin, so the tangent to the curve is horizontal there.

\n

 

\n

b)

\n

The curve is traversed from $\\pmatrix{1,-1}$ to $\\pmatrix{1,1}$, because $t=-1$ implies $x=1$ and $y=-1$, and $t=1$ implies $x=1$ and $y=1$.

\n
\n
\n

a)

\n

The correct answer in this case is $t\\rightarrow\\pmatrix{3\\cosh(t),3\\sinh(t)}$, $\\var{range[0]}\\leqslant t\\leqslant\\var{range[1]}$.

\n

To see this note that $x=3\\cosh(t)$ and $y=3\\sinh(t)$, therefore $x^2-y^2=9$, which is the equation of a rectangular hyperbola in the right half-plane.  Substituting values of $t$ for $x$ and $y$ in the given range determines points along the curve.

\n

 

\n

b)

\n

The curve is traversed from $\\pmatrix{4.63,-3.53}$ to $\\pmatrix{4.63,3.53}$, because $t=-1$ implies $x\\approx 4.63$ and $y\\approx -3.53$, and $t=1$ implies $x\\approx 4.63$ and $y\\approx 3.53$.

\n
", "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}, {"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}]}]}], "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}, {"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}]}