// Numbas version: finer_feedback_settings {"name": "Find points of intersection, tangents, and angles between parametric curves", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"variable_groups": [], "variables": {"lenu": {"templateType": "anything", "group": "Ungrouped variables", "definition": "abs(u)", "name": "lenu", "description": ""}, "q": {"templateType": "anything", "group": "Ungrouped variables", "definition": "vector(a1*t,b1*t,c1*t)", "name": "q", "description": ""}, "v": {"templateType": "anything", "group": "Ungrouped variables", "definition": "vector(d1,0,0)", "name": "v", "description": ""}, "w": {"templateType": "anything", "group": "Ungrouped variables", "definition": "vector(d1,2*e1*tau,3*f1*tau^2)", "name": "w", "description": ""}, "f1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(-5..5 except 0)", "name": "f1", "description": ""}, "b1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "(e1*a1^2)*t/d1^2", "name": "b1", "description": ""}, "phi": {"templateType": "anything", "group": "Ungrouped variables", "definition": "precround(degrees(arccos(dotuw/(lenu*lenw))),2)", "name": "phi", "description": ""}, "t": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1..9)", "name": "t", "description": ""}, "dotuv": {"templateType": "anything", "group": "Ungrouped variables", "definition": "dot(u,v)", "name": "dotuv", "description": ""}, "d1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(-5..5 except 0)", "name": "d1", "description": ""}, "dotuw": {"templateType": "anything", "group": "Ungrouped variables", "definition": "dot(u,w)", "name": "dotuw", "description": ""}, "c1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "(f1*d1*b1^2)/(a1*e1^2)", "name": "c1", "description": ""}, "e1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(-5..5 except 0)", "name": "e1", "description": ""}, "lenw": {"templateType": "anything", "group": "Ungrouped variables", "definition": "abs(w)", "name": "lenw", "description": ""}, "theta": {"templateType": "anything", "group": "Ungrouped variables", "definition": "precround(degrees(arccos(dotuv/(lenu*lenv))),2)", "name": "theta", "description": ""}, "lenv": {"templateType": "anything", "group": "Ungrouped variables", "definition": "abs(v)", "name": "lenv", "description": ""}, "a1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "d1*random(-2..2 except 0)", "name": "a1", "description": ""}, "tau": {"templateType": "anything", "group": "Ungrouped variables", "definition": "a1*t/d1", "name": "tau", "description": ""}, "u": {"templateType": "anything", "group": "Ungrouped variables", "definition": "vector(a1,b1,c1)", "name": "u", "description": ""}}, "ungrouped_variables": ["f1", "phi", "lenu", "dotuw", "tau", "e1", "dotuv", "a1", "u", "t", "w", "v", "lenw", "lenv", "d1", "q", "theta", "c1", "b1"], "name": "Find points of intersection, tangents, and angles between parametric curves", "functions": {}, "preamble": {"css": "", "js": ""}, "parts": [{"showCorrectAnswer": true, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "prompt": "

Enter the least value of $t$, and the corresponding value of $\\tau$, defining the first intersection point.  Hence enter the values of the intersection point $\\boldsymbol{p}$ for these values of $t$ and $\\tau$.

\n

$t=$ [[0]]; $\\tau=$ [[1]].

\n

$\\boldsymbol{p}=($[[2]]$,$[[3]]$,$[[4]]$)$.

", "unitTests": [], "showFeedbackIcon": true, "scripts": {}, "gaps": [{"showCorrectAnswer": true, "allowFractions": false, "customMarkingAlgorithm": "", "mustBeReduced": false, "extendBaseMarkingAlgorithm": true, "minValue": "0", "maxValue": "0", "unitTests": [], "correctAnswerStyle": "plain", "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "scripts": {}, "type": "numberentry", "notationStyles": ["plain", "en", "si-en"], "correctAnswerFraction": false, "variableReplacements": [], "marks": 1, "mustBeReducedPC": 0}, {"showCorrectAnswer": true, "allowFractions": false, "customMarkingAlgorithm": "", "mustBeReduced": false, "extendBaseMarkingAlgorithm": true, "minValue": "0", "maxValue": "0", "unitTests": [], "correctAnswerStyle": "plain", "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "scripts": {}, "type": "numberentry", "notationStyles": ["plain", "en", "si-en"], "correctAnswerFraction": false, "variableReplacements": [], "marks": 1, "mustBeReducedPC": 0}, {"showCorrectAnswer": true, "allowFractions": false, "customMarkingAlgorithm": "", "mustBeReduced": false, "extendBaseMarkingAlgorithm": true, "minValue": "0", "maxValue": "0", "unitTests": [], "correctAnswerStyle": "plain", "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "scripts": {}, "type": "numberentry", "notationStyles": ["plain", "en", "si-en"], "correctAnswerFraction": false, "variableReplacements": [], "marks": 1, "mustBeReducedPC": 0}, {"showCorrectAnswer": true, "allowFractions": false, "customMarkingAlgorithm": "", "mustBeReduced": false, "extendBaseMarkingAlgorithm": true, "minValue": "0", "maxValue": "0", "unitTests": [], "correctAnswerStyle": "plain", "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "scripts": {}, "type": "numberentry", "notationStyles": ["plain", "en", "si-en"], "correctAnswerFraction": false, "variableReplacements": [], "marks": 1, "mustBeReducedPC": 0}, {"showCorrectAnswer": true, "allowFractions": false, "customMarkingAlgorithm": "", "mustBeReduced": false, "extendBaseMarkingAlgorithm": true, "minValue": "0", "maxValue": "0", "unitTests": [], "correctAnswerStyle": "plain", "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "scripts": {}, "type": "numberentry", "notationStyles": ["plain", "en", "si-en"], "correctAnswerFraction": false, "variableReplacements": [], "marks": 1, "mustBeReducedPC": 0}], "type": "gapfill", "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "marks": 0, "sortAnswers": false}, {"showCorrectAnswer": true, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "prompt": "

Enter the greatest value of $t$, and the corresponding value of $\\tau$, defining the second intersection point.  Hence enter the values of the intersection point $\\boldsymbol{q}$ for these values of $t$ and $\\tau$.

\n

$t=$ [[0]]; $\\tau=$ [[1]].

\n

$\\boldsymbol{q}=($[[2]]$,$[[3]]$,$[[4]]$)$.

", "unitTests": [], "showFeedbackIcon": true, "scripts": {}, "gaps": [{"showCorrectAnswer": true, "allowFractions": false, "customMarkingAlgorithm": "", "mustBeReduced": false, "extendBaseMarkingAlgorithm": true, "minValue": "t", "maxValue": "t", "unitTests": [], "correctAnswerStyle": "plain", "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "scripts": {}, "type": "numberentry", "notationStyles": ["plain", "en", "si-en"], "correctAnswerFraction": false, "variableReplacements": [], "marks": 1, "mustBeReducedPC": 0}, {"showCorrectAnswer": true, "allowFractions": false, "customMarkingAlgorithm": "", "mustBeReduced": false, "extendBaseMarkingAlgorithm": true, "minValue": "tau", "maxValue": "tau", "unitTests": [], "correctAnswerStyle": "plain", "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "scripts": {}, "type": "numberentry", "notationStyles": ["plain", "en", "si-en"], "correctAnswerFraction": false, "variableReplacements": [], "marks": 1, "mustBeReducedPC": 0}, {"showCorrectAnswer": true, "allowFractions": false, "customMarkingAlgorithm": "", "mustBeReduced": false, "extendBaseMarkingAlgorithm": true, "minValue": "q[0]", "maxValue": "q[0]", "unitTests": [], "correctAnswerStyle": "plain", "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "scripts": {}, "type": "numberentry", "notationStyles": ["plain", "en", "si-en"], "correctAnswerFraction": false, "variableReplacements": [], "marks": 1, "mustBeReducedPC": 0}, {"showCorrectAnswer": true, "allowFractions": false, "customMarkingAlgorithm": "", "mustBeReduced": false, "extendBaseMarkingAlgorithm": true, "minValue": "q[1]", "maxValue": "q[1]", "unitTests": [], "correctAnswerStyle": "plain", "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "scripts": {}, "type": "numberentry", "notationStyles": ["plain", "en", "si-en"], "correctAnswerFraction": false, "variableReplacements": [], "marks": 1, "mustBeReducedPC": 0}, {"showCorrectAnswer": true, "allowFractions": false, "customMarkingAlgorithm": "", "mustBeReduced": false, "extendBaseMarkingAlgorithm": true, "minValue": "q[2]", "maxValue": "q[2]", "unitTests": [], "correctAnswerStyle": "plain", "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "scripts": {}, "type": "numberentry", "notationStyles": ["plain", "en", "si-en"], "correctAnswerFraction": false, "variableReplacements": [], "marks": 1, "mustBeReducedPC": 0}], "type": "gapfill", "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "marks": 0, "sortAnswers": false}, {"showCorrectAnswer": true, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "prompt": "

Find the tangent vector $\\boldsymbol{u}$ of the curve $\\mathcal{C}_1$.

\n

$\\boldsymbol{u}=($[[0]]$,$[[1]]$,$[[2]]$)$.

", "unitTests": [], "showFeedbackIcon": true, "scripts": {}, "gaps": [{"showCorrectAnswer": true, "allowFractions": false, "customMarkingAlgorithm": "", "mustBeReduced": false, "extendBaseMarkingAlgorithm": true, "minValue": "u[0]", "maxValue": "u[0]", "unitTests": [], "correctAnswerStyle": "plain", "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "scripts": {}, "type": "numberentry", "notationStyles": ["plain", "en", "si-en"], "correctAnswerFraction": false, "variableReplacements": [], "marks": 1, "mustBeReducedPC": 0}, {"showCorrectAnswer": true, "allowFractions": false, "customMarkingAlgorithm": "", "mustBeReduced": false, "extendBaseMarkingAlgorithm": true, "minValue": "u[1]", "maxValue": "u[1]", "unitTests": [], "correctAnswerStyle": "plain", "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "scripts": {}, "type": "numberentry", "notationStyles": ["plain", "en", "si-en"], "correctAnswerFraction": false, "variableReplacements": [], "marks": 1, "mustBeReducedPC": 0}, {"showCorrectAnswer": true, "allowFractions": false, "customMarkingAlgorithm": "", "mustBeReduced": false, "extendBaseMarkingAlgorithm": true, "minValue": "u[2]", "maxValue": "u[2]", "unitTests": [], "correctAnswerStyle": "plain", "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "scripts": {}, "type": "numberentry", "notationStyles": ["plain", "en", "si-en"], "correctAnswerFraction": false, "variableReplacements": [], "marks": 1, "mustBeReducedPC": 0}], "type": "gapfill", "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "marks": 0, "sortAnswers": false}, {"showCorrectAnswer": true, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "prompt": "

Find the tangent vector $\\boldsymbol{v}$ of the curve $\\mathcal{C}_2$ at the point $\\boldsymbol{p}$.

\n

$\\boldsymbol{v}=($[[0]]$,$[[1]]$,$[[2]]$)$.

", "unitTests": [], "showFeedbackIcon": true, "scripts": {}, "gaps": [{"showCorrectAnswer": true, "allowFractions": false, "customMarkingAlgorithm": "", "mustBeReduced": false, "extendBaseMarkingAlgorithm": true, "minValue": "v[0]", "maxValue": "v[0]", "unitTests": [], "correctAnswerStyle": "plain", "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "scripts": {}, "type": "numberentry", "notationStyles": ["plain", "en", "si-en"], "correctAnswerFraction": false, "variableReplacements": [], "marks": 1, "mustBeReducedPC": 0}, {"showCorrectAnswer": true, "allowFractions": false, "customMarkingAlgorithm": "", "mustBeReduced": false, "extendBaseMarkingAlgorithm": true, "minValue": "v[1]", "maxValue": "v[1]", "unitTests": [], "correctAnswerStyle": "plain", "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "scripts": {}, "type": "numberentry", "notationStyles": ["plain", "en", "si-en"], "correctAnswerFraction": false, "variableReplacements": [], "marks": 1, "mustBeReducedPC": 0}, {"showCorrectAnswer": true, "allowFractions": false, "customMarkingAlgorithm": "", "mustBeReduced": false, "extendBaseMarkingAlgorithm": true, "minValue": "v[2]", "maxValue": "v[2]", "unitTests": [], "correctAnswerStyle": "plain", "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "scripts": {}, "type": "numberentry", "notationStyles": ["plain", "en", "si-en"], "correctAnswerFraction": false, "variableReplacements": [], "marks": 1, "mustBeReducedPC": 0}], "type": "gapfill", "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "marks": 0, "sortAnswers": false}, {"showCorrectAnswer": true, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "prompt": "

Find the tangent vector $\\boldsymbol{w}$ of the curve $\\mathcal{C}_2$ at the point $\\boldsymbol{q}$.

\n

$\\boldsymbol{w}=($[[0]]$,$[[1]]$,$[[2]]$)$.

", "unitTests": [], "showFeedbackIcon": true, "scripts": {}, "gaps": [{"showCorrectAnswer": true, "allowFractions": false, "customMarkingAlgorithm": "", "mustBeReduced": false, "extendBaseMarkingAlgorithm": true, "minValue": "w[0]", "maxValue": "w[0]", "unitTests": [], "correctAnswerStyle": "plain", "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "scripts": {}, "type": "numberentry", "notationStyles": ["plain", "en", "si-en"], "correctAnswerFraction": false, "variableReplacements": [], "marks": 1, "mustBeReducedPC": 0}, {"showCorrectAnswer": true, "allowFractions": false, "customMarkingAlgorithm": "", "mustBeReduced": false, "extendBaseMarkingAlgorithm": true, "minValue": "w[1]", "maxValue": "w[1]", "unitTests": [], "correctAnswerStyle": "plain", "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "scripts": {}, "type": "numberentry", "notationStyles": ["plain", "en", "si-en"], "correctAnswerFraction": false, "variableReplacements": [], "marks": 1, "mustBeReducedPC": 0}, {"showCorrectAnswer": true, "allowFractions": false, "customMarkingAlgorithm": "", "mustBeReduced": false, "extendBaseMarkingAlgorithm": true, "minValue": "w[2]", "maxValue": "w[2]", "unitTests": [], "correctAnswerStyle": "plain", "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "scripts": {}, "type": "numberentry", "notationStyles": ["plain", "en", "si-en"], "correctAnswerFraction": false, "variableReplacements": [], "marks": 1, "mustBeReducedPC": 0}], "type": "gapfill", "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "marks": 0, "sortAnswers": false}, {"showCorrectAnswer": true, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "prompt": "

Calculate the angle $\\theta$ (in degrees) between the tangent vectors of each curve, at the point $\\boldsymbol{p}$.

\n

$\\theta=$ [[0]]$^\\circ$.  (Enter your answer to 2d.p.)

", "unitTests": [], "showFeedbackIcon": true, "scripts": {}, "gaps": [{"showCorrectAnswer": true, "allowFractions": false, "customMarkingAlgorithm": "", "mustBeReduced": false, "extendBaseMarkingAlgorithm": true, "minValue": "theta-0.01", "maxValue": "theta+0.01", "unitTests": [], "correctAnswerStyle": "plain", "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "scripts": {}, "type": "numberentry", "notationStyles": ["plain", "en", "si-en"], "correctAnswerFraction": false, "variableReplacements": [], "marks": 1, "mustBeReducedPC": 0}], "type": "gapfill", "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "marks": 0, "sortAnswers": false}, {"showCorrectAnswer": true, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "prompt": "

Calculate the angle $\\phi$ (in degrees) between the tangent vectors of each curve, at the point $\\boldsymbol{q}$.

\n

$\\phi=$ [[0]]$^\\circ$.  (Enter your answer to 2d.p.)

", "unitTests": [], "showFeedbackIcon": true, "scripts": {}, "gaps": [{"showCorrectAnswer": true, "allowFractions": false, "customMarkingAlgorithm": "", "mustBeReduced": false, "extendBaseMarkingAlgorithm": true, "minValue": "phi-0.01", "maxValue": "phi+0.01", "unitTests": [], "correctAnswerStyle": "plain", "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "scripts": {}, "type": "numberentry", "notationStyles": ["plain", "en", "si-en"], "correctAnswerFraction": false, "variableReplacements": [], "marks": 1, "mustBeReducedPC": 0}], "type": "gapfill", "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "marks": 0, "sortAnswers": false}], "variablesTest": {"condition": "", "maxRuns": 100}, "statement": "

The pair of curves

\n

\\[\\begin{align}\\mathcal{C}_1&:t\\rightarrow\\pmatrix{\\simplify{{a1}*t},\\simplify{{b1}*t},\\simplify{{c1}*t}},-\\infty\\leqslant t\\leqslant\\infty\\\\\\mathcal{C}_2&:\\tau\\rightarrow\\pmatrix{\\simplify{{d1}*tau},\\simplify{{e1}*tau^2},\\simplify{{f1}*tau^3}},-\\infty\\leqslant \\tau\\leqslant\\infty\\end{align}\\]

\n

intersect at two distinct points $\\boldsymbol{p}$ and $\\boldsymbol{q}$.

", "tags": ["checked2015", "intersection of curves", "parametric curves", "tangent vectors"], "rulesets": {}, "extensions": [], "type": "question", "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "

Intersection points, tangent vectors, angles between pairs of curves, given in parametric form.

"}, "advice": "

Note that in this advice, the full calculator display is used in the calculation of each step; any rounding is purely for display clarity.

\n

The two curves $\\mathcal{C}_1$ and $\\mathcal{C}_2$ intersect where

\n

\\[\\begin{align}\\simplify{{a1}*t}&=\\simplify{{d1}*tau}\\tag{1},\\\\\\simplify{{b1}t}&=\\simplify{{e1}*tau^2},\\tag{2}\\\\\\simplify{{c1}*t}&=\\simplify{{f1}*tau^3}.\\tag{3}\\end{align}\\]

\n

From equation (1)

\n

\\[\\tau=\\frac{\\var{a1}}{\\var{d1}}t=\\simplify{{a1}/{d1}t},\\tag{4}\\]

\n

which we substitute into equation (2) to determine that

\n

\\[\\var{b1}t=\\var{e1}\\times\\left(\\simplify{{a1}/{d1}t}\\right)^2=\\simplify{{e1*a1^2}/{d1^2}t^2}.\\]

\n

Then either $t=0$ or $t=\\simplify{{b1*d1^2}/{e1*a1^2}}$.

\n

Substitute these two expressions into equation (4), then either $\\tau=0$ (when $t=0$), or $\\tau=\\simplify{{b1*d1}/{e1*a1}}$ (when $t=\\var{t}$).

\n

(As a check, substitute these pairs of values into equation (3), to show that equality holds.)

\n

 

\n

To determine the intersection points $\\boldsymbol{p}$ and $\\boldsymbol{q}$, substitute the values of $t$ and $\\tau$ into either expression for the curves $\\mathcal{C}_1$ and $\\mathcal{C}_2$.

\n

The point $\\boldsymbol{p}$ is given by the least value of $t$, which is $t=0$ (and correspondingly $\\tau=0$).  The point $\\boldsymbol{p}$ is therefore $\\boldsymbol{p}=\\pmatrix{0,0,0}$.

\n

The point $\\boldsymbol{q}$ is given by the greatest value of $t$, which is $t=\\var{t}$ (and correspondingly $\\tau=\\var{tau}$).  The point $\\boldsymbol{q}$ is therefore $\\boldsymbol{q}=\\pmatrix{\\var{a1}\\times\\var{t},\\var{b1}\\times\\var{t},\\var{c1}\\times\\var{t}}=\\pmatrix{\\var{q[0]},\\var{q[1]},\\var{q[2]}}$.

\n

 

\n

In general, the tangent vector $\\boldsymbol{u}$, of a curve $t\\rightarrow\\pmatrix{x(t),y(t),z(t)}$, is given by $\\boldsymbol{u}\\equiv\\pmatrix{\\frac{\\mathrm{d}x}{\\mathrm{d}t},\\frac{\\mathrm{d}y}{\\mathrm{d}t},\\frac{\\mathrm{d}z}{\\mathrm{d}t}}$.

\n

The tangent vector of the curve $\\mathcal{C}_1$ is therefore given by $\\boldsymbol{u}=\\pmatrix{\\var{u[0]},\\var{u[1]},\\var{u[2]}}$, which is constant, and independent of $t$.

\n

The tangent vector of $\\mathcal{C}_2$ is given by $\\pmatrix{\\var{d1},\\var{2*e1}\\tau,\\var{3*f1}\\tau^2}$, so the tangent vector at the point $\\boldsymbol{p}$ (where $\\tau=0$) is given by $\\boldsymbol{v}=\\pmatrix{\\var{v[0]},\\var{v[1]},\\var{v[2]}}$.

\n

In a similar way, the tangent vector of $\\mathcal{C}_2$ at the point $\\boldsymbol{q}$ (where $\\tau=\\var{tau}$) is given by $\\boldsymbol{w}=\\pmatrix{\\var{w[0]},\\var{w[1]},\\var{w[2]}}$.

\n

 

\n

The angle $\\theta$ between any two vectors $\\boldsymbol{a}$ and $\\boldsymbol{b}$ can be calculated using

\n

\\[\\cos(\\theta)=\\frac{\\boldsymbol{a\\cdot b}}{\\lvert\\boldsymbol{a}\\rvert\\lvert\\boldsymbol{b}\\rvert},\\]

\n

where $\\lvert\\boldsymbol{x}\\rvert=\\sqrt{x_1^2+x_2^2+x_3^2}$ is the length of the vector $\\boldsymbol{x}$.

\n

The angle $\\theta$ between the tangent vectors at the point $\\boldsymbol{p}$ is the angle between the vectors $\\boldsymbol{u}$ and $\\boldsymbol{v}$, so

\n

\\[\\cos(\\theta)=\\frac{(\\var{u[0]}\\times\\var{v[0]})+(\\var{u[1]}\\times\\var{v[1]})+(\\var{u[2]}\\times\\var{v[2]})}{\\sqrt{(\\var{u[0]})^2+(\\var{u[1]})^2+(\\var{u[2]})^2}\\sqrt{(\\var{v[0]})^2+(\\var{v[1]})^2+(\\var{v[2]})^2}}=\\frac{\\var{dotuv}}{\\var{precround(lenu,4)}\\times\\var{precround(lenv,4)}}=\\var{precround(dotuv/(lenu*lenv),4)}\\;\\text{to 4d.p.}\\]

\n

Then $\\theta=\\arccos(\\var{precround(dotuv/(lenu*lenv),4)})=\\var{theta}^\\circ$ to 2d.p.

\n

In an identical way, the angle $\\phi$ between the tangent vectors at the point $\\boldsymbol{q}$ is the angle between the vectors $\\boldsymbol{u}$ and $\\boldsymbol{w}$, so $\\phi=\\var{phi}^\\circ$ to 2d.p.

", "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}, {"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}]}]}], "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}, {"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}]}