// Numbas version: finer_feedback_settings {"name": "Cartesian parameterisation of surface, normal vector, and magnitude", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"variable_groups": [], "variables": {"a": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1..9)*sign(random(-1,1))", "name": "a", "description": ""}, "t": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(0,1)", "name": "t", "description": ""}, "d": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1..9)*sign(random(-1,1))", "name": "d", "description": ""}, "c": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1..9)*sign(random(-1,1))", "name": "c", "description": ""}, "b": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1..9)", "name": "b", "description": ""}}, "ungrouped_variables": ["a", "c", "b", "d", "t"], "name": "Cartesian parameterisation of surface, normal vector, and magnitude", "functions": {}, "preamble": {"css": "", "js": ""}, "parts": [{"showCorrectAnswer": true, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "prompt": "
Express the surface in the form $z=g(x,y)$.
\n$z=g(x,y)=$ [[0]]. (Do not enter decimals in your answer.)
", "unitTests": [], "showFeedbackIcon": true, "scripts": {}, "gaps": [{"answer": "({d}/{a^2})*x^2+({d}/{c^2})*y^2", "failureRate": 1, "customMarkingAlgorithm": "", "answerSimplification": "all", "showPreview": true, "notallowed": {"showStrings": false, "message": "Do not enter decimals in your answer.
", "strings": ["."], "partialCredit": 0}, "checkingType": "absdiff", "checkVariableNames": false, "vsetRange": [0, 1], "type": "jme", "vsetRangePoints": 5, "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "scripts": {}, "extendBaseMarkingAlgorithm": true, "expectedVariableNames": [], "unitTests": [], "checkingAccuracy": 0.001, "showCorrectAnswer": true, "variableReplacements": [], "marks": 1}], "type": "gapfill", "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "marks": 0, "sortAnswers": false}, {"showCorrectAnswer": true, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "prompt": "Using the above Cartesian form $z=g(x,y)$ of the surface you have just found, find a normal vector $\\boldsymbol{n}$ with $z$-component equal to $1$.
\n$\\boldsymbol{n}=($[[0]]$,$[[1]]$,$[[2]]$)$. (Do not enter decimals in your answer.)
", "unitTests": [], "showFeedbackIcon": true, "scripts": {}, "gaps": [{"answer": "({-2d}/{a^2})*x", "failureRate": 1, "customMarkingAlgorithm": "", "answerSimplification": "all", "showPreview": true, "notallowed": {"showStrings": false, "message": "Do not enter decimals in your answer.
", "strings": ["."], "partialCredit": 0}, "checkingType": "absdiff", "checkVariableNames": false, "vsetRange": [0, 1], "type": "jme", "vsetRangePoints": 5, "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "scripts": {}, "extendBaseMarkingAlgorithm": true, "expectedVariableNames": [], "unitTests": [], "checkingAccuracy": 0.001, "showCorrectAnswer": true, "variableReplacements": [], "marks": 1}, {"answer": "({-2d}/{c^2})*y", "failureRate": 1, "customMarkingAlgorithm": "", "answerSimplification": "all", "showPreview": true, "notallowed": {"showStrings": false, "message": "Do not enter decimals in your answer.
", "strings": ["."], "partialCredit": 0}, "checkingType": "absdiff", "checkVariableNames": false, "vsetRange": [0, 1], "type": "jme", "vsetRangePoints": 5, "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "scripts": {}, "extendBaseMarkingAlgorithm": true, "expectedVariableNames": [], "unitTests": [], "checkingAccuracy": 0.001, "showCorrectAnswer": true, "variableReplacements": [], "marks": 1}, {"answer": "1", "failureRate": 1, "customMarkingAlgorithm": "", "answerSimplification": "all", "showPreview": true, "notallowed": {"showStrings": false, "message": "Do not enter decimals in your answer.
", "strings": ["."], "partialCredit": 0}, "checkingType": "absdiff", "checkVariableNames": false, "vsetRange": [0, 1], "type": "jme", "vsetRangePoints": 5, "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "scripts": {}, "extendBaseMarkingAlgorithm": true, "expectedVariableNames": [], "unitTests": [], "checkingAccuracy": 0.001, "showCorrectAnswer": true, "variableReplacements": [], "marks": 1}], "type": "gapfill", "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "marks": 0, "sortAnswers": false}, {"showCorrectAnswer": true, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "prompt": "Calculate the magnitude $|\\boldsymbol{n}|$ of the normal vector $\\boldsymbol{n}$.
\n$|\\boldsymbol{n}|=$ [[0]]. (Do not enter decimals in your answer.)
", "unitTests": [], "showFeedbackIcon": true, "scripts": {}, "gaps": [{"answer": "sqrt(({4*d^2}/{a^4})x^2+({4*d^2}/{c^4})y^2+1)", "failureRate": 1, "customMarkingAlgorithm": "", "answerSimplification": "all", "showPreview": true, "notallowed": {"showStrings": false, "message": "Do not enter decimals in your answer.
", "strings": ["."], "partialCredit": 0}, "checkingType": "absdiff", "checkVariableNames": false, "vsetRange": [0, 1], "type": "jme", "vsetRangePoints": 5, "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true, "scripts": {}, "extendBaseMarkingAlgorithm": true, "expectedVariableNames": [], "unitTests": [], "checkingAccuracy": 0.001, "showCorrectAnswer": true, "variableReplacements": [], "marks": 1}], "type": "gapfill", "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "marks": 0, "sortAnswers": false}], "statement": "You are given the following surface, defined in parametric form
\n\\[\\pmatrix{u,v}\\rightarrow\\pmatrix{\\simplify{{a}*v*({1-t}*cos({b}*u)+{t}*sin({b}*u))},\\simplify{{c}*v*({1-t}*sin({b}*u)+{t}*cos({b}*u))},\\simplify{{d}*v^2}}, \\quad 0\\leqslant u\\leqslant 2\\pi, 0\\leqslant v\\leqslant 1\\]
", "tags": ["checked2015", "normals", "parametric form", "surfaces"], "rulesets": {}, "extensions": [], "type": "question", "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "Cartesian form of the parametric representation of a surface, normal vector, and magnitude.
\nAccuracy for part c) should be made more stringent as can be marked correct for an incorrect answer. Use a different sample range rather than 0 to 1 would help as would setting accuracy to something less than 0.001.
"}, "variablesTest": {"condition": "", "maxRuns": 100}, "advice": "The given surface has components
\n\\[\\begin{align}x&=\\simplify{{a}*v*({1-t}*cos({b}*u)+{t}*sin({b}*u))},\\\\y&=\\simplify{{c}*v*({1-t}*sin({b}*u)+{t}*cos({b}*u))},\\\\z&=\\simplify{{d}*v^2}.\\end{align}\\]
\nThen
\n\\[\\simplify{(x/{a})^2}+\\simplify{(y/{c})^2}=(\\simplify{v*({1-t}*cos({b}*u)+{t}*sin({b}*u))})^2+(\\simplify{v*({1-t}*sin({b}*u)+{t}*cos({b}*u))})^2=v^2,\\]
\nbut we know that $z=\\simplify{{d}*v^2}$, so
\n\\[\\simplify{(x/{a})^2}+\\simplify{(y/{c})^2}=\\simplify{z/{d}},\\]
\nand hence
\n\\[z=\\simplify{{d}/{a^2}x^2+{d}/{c^2}y^2}.\\]
\n\n
Given the above form for $z=g(x,y)$, a normal vector $\\boldsymbol{n}$, with positive $z$-component is
\n\\[\\boldsymbol{n}=\\pmatrix{-\\frac{\\partial g}{\\partial x},-\\frac{\\partial g}{\\partial y},1}.\\]
\nIn this case
\n\\[\\boldsymbol{n}=\\pmatrix{\\simplify{{-2d}/{a^2}}x,\\simplify{{-2d}/{c^2}}y,1}\\]
\nby straightforward partial differentiation.
\n\n
The magnitude $\\lvert\\boldsymbol{n}\\rvert$ of the normal vector $\\boldsymbol{n}$ is given by $\\lvert\\boldsymbol{n}\\rvert=\\sqrt{n_1^2+n_2^2+n_3^2}$, and hence
\n\\[\\lvert\\boldsymbol{n}\\rvert=\\sqrt{\\simplify{{4*d^2}/{a^4}}x^2+\\simplify{{4*d^2}/{c^4}}y^2+1}.\\]
", "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}, {"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}]}]}], "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}, {"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}]}