// Numbas version: finer_feedback_settings {"name": "Find Cartesian form of a surface, and a normal vector", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"variable_groups": [], "variables": {"b": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1..9)", "description": "", "name": "b"}, "t": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(0,1)", "description": "", "name": "t"}, "d": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1..9)", "description": "", "name": "d"}, "a": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1..9)*sign(random(-1,1))", "description": "", "name": "a"}, "c": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1..9)*sign(random(-1,1))", "description": "", "name": "c"}}, "ungrouped_variables": ["a", "c", "b", "d", "t"], "question_groups": [{"pickingStrategy": "all-ordered", "questions": [], "name": "", "pickQuestions": 0}], "name": "Find Cartesian form of a surface, and a normal vector", "functions": {}, "showQuestionGroupNames": false, "parts": [{"scripts": {}, "gaps": [{"answer": "{d}*sqrt(x^2/{a^2}+y^2/{c^2})", "vsetrange": [0, 1], "checkingaccuracy": 0.001, "showCorrectAnswer": true, "expectedvariablenames": [], "notallowed": {"message": "

Do not enter decimals in your answer.

", "showStrings": false, "partialCredit": 0, "strings": ["."]}, "showpreview": true, "checkingtype": "absdiff", "scripts": {}, "checkvariablenames": false, "type": "jme", "answersimplification": "all", "marks": 1, "vsetrangepoints": 5}], "type": "gapfill", "prompt": "\n

Express the surface in the form $z=g(x,y)$.

\n

$z=g(x,y)=$ [[0]].  (Do not enter decimals in your answer.)

\n ", "showCorrectAnswer": true, "marks": 0}, {"scripts": {}, "gaps": [{"answer": "-({d^2}/{a^2})*x", "vsetrange": [0, 1], "checkingaccuracy": 0.001, "showCorrectAnswer": true, "expectedvariablenames": [], "notallowed": {"message": "

Do not enter decimals in your answer.

", "showStrings": false, "partialCredit": 0, "strings": ["."]}, "showpreview": true, "checkingtype": "absdiff", "scripts": {}, "checkvariablenames": false, "type": "jme", "answersimplification": "all", "marks": 1, "vsetrangepoints": 5}, {"answer": "-({d^2}/{c^2})*y", "vsetrange": [0, 1], "checkingaccuracy": 0.001, "showCorrectAnswer": true, "expectedvariablenames": [], "notallowed": {"message": "

Do not enter decimals in your answer.

", "showStrings": false, "partialCredit": 0, "strings": ["."]}, "showpreview": true, "checkingtype": "absdiff", "scripts": {}, "checkvariablenames": false, "type": "jme", "answersimplification": "all", "marks": 1, "vsetrangepoints": 5}, {"answer": "1", "vsetrange": [0, 1], "checkingaccuracy": 0.001, "showCorrectAnswer": true, "expectedvariablenames": [], "notallowed": {"message": "

Do not enter decimals in your answer.

", "showStrings": false, "partialCredit": 0, "strings": ["."]}, "showpreview": true, "checkingtype": "absdiff", "scripts": {}, "checkvariablenames": false, "type": "jme", "answersimplification": "all", "marks": 1, "vsetrangepoints": 5}], "type": "gapfill", "prompt": "

Using the above Cartesian form $z=g(x,y)$ of the surface you have just found, a normal vector $\\boldsymbol{n}$ with $z$-component equal to $1$, can be written in the form $\\boldsymbol{n}=\\pmatrix{\\frac{p(x)}{z},\\frac{q(y)}{z},k}$.  Fill in the values for $p(x)$, $q(y)$, and $k$ below.

\n

$\\boldsymbol{n}=($[[0]]$/z,$[[1]]$/z,$[[2]]$)$.  (Do not enter decimals in your answer.)

", "showCorrectAnswer": true, "marks": 0}, {"scripts": {}, "gaps": [{"answer": "sqrt(({d^4}/{a^4})*(x^2/z^2)+({d^4}/{c^4})*(y^2/z^2)+1)", "vsetrange": [0, 1], "checkingaccuracy": 0.001, "showCorrectAnswer": true, "expectedvariablenames": [], "notallowed": {"message": "

Do not enter decimals in your answer.

", "showStrings": false, "partialCredit": 0, "strings": ["."]}, "showpreview": true, "checkingtype": "absdiff", "scripts": {}, "checkvariablenames": false, "type": "jme", "answersimplification": "all", "marks": 1, "vsetrangepoints": 5}], "type": "gapfill", "prompt": "

Calculate the magnitude $|\\boldsymbol{n}|$ of the normal vector $\\boldsymbol{n}$, using the expression for $z$ to simplify your answer.

\n

$|\\boldsymbol{n}|=$ [[0]].  (Do not enter decimals in your answer.)

", "showCorrectAnswer": true, "marks": 0}], "statement": "

You are given the following surface, defined in parametric form

\n

\\[\\pmatrix{u,v}\\rightarrow\\pmatrix{\\simplify{{a}*v*({1-t}*cos({b}*u)+{t}*sin({b}*u))},\\simplify{{c}*v*({1-t}*sin({b}*u)+{t}*cos({b}*u))},\\simplify{{d}*v}}, \\quad 0\\leqslant u\\leqslant 2\\pi, 0\\leqslant v\\leqslant 1\\]

", "tags": ["checked2015", "MAS2104"], "rulesets": {}, "preamble": {"css": "", "js": ""}, "type": "question", "metadata": {"notes": "", "licence": "Creative Commons Attribution 4.0 International", "description": "

Cartesian form of the parametric representation of a surface, normal vector, and magnitude.

"}, "variablesTest": {"condition": "", "maxRuns": 100}, "advice": "

The given surface has components

\n

\\[\\begin{align}x&=\\simplify{{a}*v*({1-t}*cos({b}*u)+{t}*sin({b}*u))},\\\\y&=\\simplify{{c}*v*({1-t}*sin({b}*u)+{t}*cos({b}*u))},\\\\z&=\\simplify{{d}*v}.\\end{align}\\]

\n

Then

\n

\\[\\simplify{(x/{a})^2}+\\simplify{(y/{c})^2}=(\\simplify{v*({1-t}*cos({b}*u)+{t}*sin({b}*u))})^2+(\\simplify{v*({1-t}*sin({b}*u)+{t}*cos({b}*u))})^2=v^2,\\]

\n

but we know that $z=\\simplify{{d}*v}$, so

\n

\\[\\simplify{(x/{a})^2}+\\simplify{(y/{c})^2}=\\simplify{(z/{d})^2},\\]

\n

and hence

\n

\\[z=\\var{d}\\sqrt{\\simplify{x^2/{a^2}}+\\simplify{y^2/{c^2}}},\\]

\n

where we have taken the positive square root because $v\\geqslant 0\\implies z\\geqslant 0$.

\n

 

\n

Given the above form for $z=g(x,y)$, a normal vector $\\boldsymbol{n}$, with positive $z$-component is

\n

\\[\\boldsymbol{n}=\\pmatrix{-\\frac{\\partial g}{\\partial x},-\\frac{\\partial g}{\\partial y},1}.\\]

\n

In this case

\n

\\[\\boldsymbol{n}=\\pmatrix{\\simplify{{-d^2}/{a^2}}\\frac{x}{z},\\simplify{{-d^2}/{c^2}}\\frac{y}{z},1}\\]

\n

by straightforward partial differentiation.

\n

 

\n

The magnitude $\\lvert\\boldsymbol{n}\\rvert$ of the normal vector $\\boldsymbol{n}$ is given by $\\lvert\\boldsymbol{n}\\rvert=\\sqrt{n_1^2+n_2^2+n_3^2}$, and hence

\n

\\[\\lvert\\boldsymbol{n}\\rvert=\\sqrt{\\simplify{{d^4}/{a^4}}\\frac{x^2}{z^2}+\\simplify{{d^4}/{c^4}}\\frac{y^2}{z^2}+1}.\\]

", "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}]}]}], "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}]}