// Numbas version: finer_feedback_settings {"name": "Find gradient of scalar field, ", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"variable_groups": [], "variables": {"p4": {"group": "Ungrouped variables", "templateType": "anything", "definition": "random(0..4)", "description": "", "name": "p4"}, "e1": {"group": "Ungrouped variables", "templateType": "anything", "definition": "random(1..9)*sign(random(-1,1))", "description": "", "name": "e1"}, "p1": {"group": "Ungrouped variables", "templateType": "anything", "definition": "random(0..4)", "description": "", "name": "p1"}, "p12": {"group": "Ungrouped variables", "templateType": "anything", "definition": "random(0,1)", "description": "", "name": "p12"}, "p9": {"group": "Ungrouped variables", "templateType": "anything", "definition": "random(0,1)", "description": "", "name": "p9"}, "p3": {"group": "Ungrouped variables", "templateType": "anything", "definition": "random(0..4)", "description": "", "name": "p3"}, "p8": {"group": "Ungrouped variables", "templateType": "anything", "definition": "random(0,1)", "description": "", "name": "p8"}, "p7": {"group": "Ungrouped variables", "templateType": "anything", "definition": "if(p8=0 and p9=0,1,random(0,1))", "description": "", "name": "p7"}, "d1": {"group": "Ungrouped variables", "templateType": "anything", "definition": "random(1..9)*sign(random(-1,1))", "description": "", "name": "d1"}, "p5": {"group": "Ungrouped variables", "templateType": "anything", "definition": "random(0..4)", "description": "", "name": "p5"}, "p2": {"group": "Ungrouped variables", "templateType": "anything", "definition": "random(0..4)", "description": "", "name": "p2"}, "b1": {"group": "Ungrouped variables", "templateType": "anything", "definition": "random(1..9)*sign(random(-1,1))", "description": "", "name": "b1"}, "c1": {"group": "Ungrouped variables", "templateType": "anything", "definition": "random(1..9)*sign(random(-1,1))", "description": "", "name": "c1"}, "t": {"group": "Ungrouped variables", "templateType": "anything", "definition": "random(0,1)", "description": "", "name": "t"}, "a1": {"group": "Ungrouped variables", "templateType": "anything", "definition": "random(1..9)*sign(random(-1,1))", "description": "", "name": "a1"}, "p11": {"group": "Ungrouped variables", "templateType": "anything", "definition": "random(0,1)", "description": "", "name": "p11"}, "p6": {"group": "Ungrouped variables", "templateType": "anything", "definition": "random(0..4)", "description": "", "name": "p6"}, "p10": {"group": "Ungrouped variables", "templateType": "anything", "definition": "if(p11=0 and p12=0,1,random(0,1))", "description": "", "name": "p10"}}, "ungrouped_variables": ["p2", "p3", "p1", "p6", "p7", "p4", "p5", "p8", "p9", "a1", "p11", "p12", "t", "b1", "p10", "c1", "e1", "d1"], "name": "Find gradient of scalar field, ", "functions": {}, "preamble": {"css": "", "js": ""}, "parts": [{"showCorrectAnswer": true, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "prompt": "

$f(x,y,z)=\\simplify[std]{{a1}*x^{p1}*y^{p2}*z^{p3}+{b1}*x^{p4}*y^{p5}*z^{p6}+{c1}*({1-t}*sin({d1}*x^{p7}*y^{p8}*z^{p9})+{t}*cos({e1}*x^{p10}*y^{p11}*z^{p12}))}$.

\n

$\\boldsymbol{\\nabla}f=($[[0]]$,$[[1]]$,$[[2]]$)$.

", "unitTests": [], "showFeedbackIcon": true, "scripts": {}, "gaps": [{"answer": "{p1*a1}*x^{p1-1}*y^{p2}*z^{p3}+{p4*b1}*x^{p4-1}*y^{p5}*z^{p6}+{c1*d1*p7*(1-t)}*x^{p7-1}*y^{p8}*z^{p9}*cos({d1}*x^{p7}*y^{p8}*z^{p9})-{c1*e1*p10*t}*x^{p10-1}*y^{p11}*z^{p12}*sin({e1}*x^{p10}*y^{p11}*z^{p12})", "showCorrectAnswer": true, "customMarkingAlgorithm": "", "answerSimplification": "all", "extendBaseMarkingAlgorithm": true, "showPreview": true, "checkVariableNames": true, "checkingType": "absdiff", "vsetRange": [0, 1], "variableReplacementStrategy": "originalfirst", "failureRate": 1, "scripts": {}, "vsetRangePoints": 5, "type": "jme", "unitTests": [], "checkingAccuracy": 0.001, "expectedVariableNames": ["x", "y", "z"], "variableReplacements": [], "marks": 1, "showFeedbackIcon": true}, {"answer": "{p2*a1}*x^{p1}*y^{p2-1}*z^{p3}+{p5*b1}*x^{p4}*y^{p5-1}*z^{p6}+{c1*d1*p8*(1-t)}*x^{p7}*y^{p8-1}*z^{p9}*cos({d1}*x^{p7}*y^{p8}*z^{p9})-{c1*e1*p11*t}*x^{p10}*y^{p11-1}*z^{p12}*sin({e1}*x^{p10}*y^{p11}*z^{p12})", "showCorrectAnswer": true, "customMarkingAlgorithm": "", "answerSimplification": "all", "extendBaseMarkingAlgorithm": true, "showPreview": true, "checkVariableNames": true, "checkingType": "absdiff", "vsetRange": [0, 1], "variableReplacementStrategy": "originalfirst", "failureRate": 1, "scripts": {}, "vsetRangePoints": 5, "type": "jme", "unitTests": [], "checkingAccuracy": 0.001, "expectedVariableNames": ["x", "y", "z"], "variableReplacements": [], "marks": 1, "showFeedbackIcon": true}, {"answer": "{p3*a1}*x^{p1}*y^{p2}*z^{p3-1}+{p6*b1}*x^{p4}*y^{p5}*z^{p6-1}+{c1*d1*p9*(1-t)}*x^{p7}*y^{p8}*z^{p9-1}*cos({d1}*x^{p7}*y^{p8}*z^{p9})-{c1*e1*p12*t}*x^{p10}*y^{p11}*z^{p12-1}*sin({e1}*x^{p10}*y^{p11}*z^{p12})", "showCorrectAnswer": true, "customMarkingAlgorithm": "", "answerSimplification": "all", "extendBaseMarkingAlgorithm": true, "showPreview": true, "checkVariableNames": true, "checkingType": "absdiff", "vsetRange": [0, 1], "variableReplacementStrategy": "originalfirst", "failureRate": 1, "scripts": {}, "vsetRangePoints": 5, "type": "jme", "unitTests": [], "checkingAccuracy": 0.001, "expectedVariableNames": ["x", "y", "z"], "variableReplacements": [], "marks": 1, "showFeedbackIcon": true}], "type": "gapfill", "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "marks": 0, "sortAnswers": false}], "variablesTest": {"condition": "", "maxRuns": 100}, "statement": "

Find $\\boldsymbol{\\nabla}f$ for the following function $f(x,y,z)$.

", "tags": ["checked2015", "gradient", "nabla", "partial derivatives", "scalar field"], "rulesets": {"std": ["all", "!noLeadingMinus", "!collectNumbers"]}, "extensions": [], "type": "question", "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "

Gradient of $f(x,y,z)$.

\n

Should warn that multiplied terms need * to denote multiplication.

"}, "advice": "

This question is simply an exercise in partial differentiation, using the fact that

\n

\\[\\boldsymbol{\\nabla}f=\\pmatrix{\\frac{\\partial f}{\\partial x},\\frac{\\partial f}{\\partial y},\\frac{\\partial f}{\\partial z}}.\\]

\n

Hence

\n

\\[\\boldsymbol{\\nabla}f=\\pmatrix{\\simplify{{p1*a1}*x^{p1-1}*y^{p2}*z^{p3}+{p4*b1}*x^{p4-1}*y^{p5}*z^{p6}+{c1*d1*p7*(1-t)}*x^{p7-1}*y^{p8}*z^{p9}*cos({d1}*x^{p7}*y^{p8}*z^{p9})-{c1*e1*p10*t}*x^{p10-1}*y^{p11}*z^{p12}*sin({e1}*x^{p10}*y^{p11}*z^{p12})},\\simplify{{p2*a1}*x^{p1}*y^{p2-1}*z^{p3}+{p5*b1}*x^{p4}*y^{p5-1}*z^{p6}+{c1*d1*p8*(1-t)}*x^{p7}*y^{p8-1}*z^{p9}*cos({d1}*x^{p7}*y^{p8}*z^{p9})-{c1*e1*p11*t}*x^{p10}*y^{p11-1}*z^{p12}*sin({e1}*x^{p10}*y^{p11}*z^{p12})},\\simplify{{p3*a1}*x^{p1}*y^{p2}*z^{p3-1}+{p6*b1}*x^{p4}*y^{p5}*z^{p6-1}+{c1*d1*p9*(1-t)}*x^{p7}*y^{p8}*z^{p9-1}*cos({d1}*x^{p7}*y^{p8}*z^{p9})-{c1*e1*p12*t}*x^{p10}*y^{p11}*z^{p12-1}*sin({e1}*x^{p10}*y^{p11}*z^{p12})}}.\\]

", "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}, {"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}]}]}], "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}, {"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}]}