// Numbas version: exam_results_page_options {"name": "Determine long-term behaviour of 1D dynamical systems", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"variable_groups": [], "variables": {"r1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1..9)*sign(random(-1,1))", "description": "", "name": "r1"}, "incans21": {"templateType": "anything", "group": "Ungrouped variables", "definition": "if (ans2=0,a2,\n if (ans2=a2,b2,\n if (ans2=b2,infinity,0)\n )\n )", "description": "", "name": "incans21"}, "x01": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(0..9)", "description": "", "name": "x01"}, "x02": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(0..15)", "description": "", "name": "x02"}, "a1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1..5)", "description": "", "name": "a1"}, "b2": {"templateType": "anything", "group": "Ungrouped variables", "definition": "a2+random(1..5)", "description": "", "name": "b2"}, "incans13": {"templateType": "anything", "group": "Ungrouped variables", "definition": "if (ans1=0,latex('$\\\\simplify{{a1}/{random(2..5)}}$'),\n if (ans1=a1,-infinity,a1*random(2..5))\n )", "description": "", "name": "incans13"}, "incans22": {"templateType": "anything", "group": "Ungrouped variables", "definition": "if (ans2=0,infinity,\n if (ans2=a2,infinity,\n if (ans2=b2,a2,b2)\n )\n )", "description": "", "name": "incans22"}, "incans11": {"templateType": "anything", "group": "Ungrouped variables", "definition": "if (ans1=0,infinity,\n if (ans1=a1,0,a1)\n )", "description": "", "name": "incans11"}, "ans2": {"templateType": "anything", "group": "Ungrouped variables", "definition": "if (r2<0,\n if (x02=0,0,\n if (x02=a2,a2,\n if (x02=b2,b2,\n if (x02As $t\\rightarrow\\infty$ $x\\rightarrow\\var{ans1}$.

", "

As $t\\rightarrow\\infty$ $x\\rightarrow\\var{incans11}$.

", "

As $t\\rightarrow\\infty$ $x\\rightarrow\\var{incans12}$.

", "

As $t\\rightarrow\\infty$ $x\\rightarrow\\var{incans13}$.

"], "displayColumns": 1, "prompt": "

\\[\\dot{x}=f(x)=\\simplify{{r1}*x*(1-x/{a1})}\\]

\n

with initial condition $x(0)=\\var{x01}$ and $x\\geqslant 0$.

", "distractors": ["", "", "", ""], "shuffleChoices": true, "scripts": {}, "minMarks": 0, "type": "1_n_2", "maxMarks": 0, "showCorrectAnswer": true, "matrix": [1, 0, 0, 0], "marks": 0}, {"displayType": "radiogroup", "choices": ["

As $t\\rightarrow\\infty$ $x\\rightarrow\\var{ans2}$.

", "

As $t\\rightarrow\\infty$ $x\\rightarrow\\var{incans21}$.

", "

As $t\\rightarrow\\infty$ $x\\rightarrow\\var{incans22}$.

", "

As $t\\rightarrow\\infty$ $x\\rightarrow\\var{incans23}$.

"], "displayColumns": 1, "prompt": "

\\[\\dot{x}=g(x)=\\simplify{{r2}*x*({a2}-x)*(x-{b2})}\\]

\n

with initial condition $x(0)=\\var{x02}$ and $x\\geqslant 0$.

", "distractors": ["", "", "", ""], "shuffleChoices": true, "scripts": {}, "minMarks": 0, "type": "1_n_2", "maxMarks": 0, "showCorrectAnswer": true, "matrix": [1, 0, 0, 0], "marks": 0}], "statement": "

For the given one-dimensional dynamical systems and initial conditions below, determine the long-term behaviour of the solution $x(t)$ as $t\\rightarrow\\infty$.

", "tags": ["checked2015", "MAS2106"], "rulesets": {}, "preamble": {"css": "", "js": ""}, "type": "question", "metadata": {"notes": "", "licence": "Creative Commons Attribution 4.0 International", "description": "

Determine the long-term behaviour of 1D dynamical systems.

"}, "variablesTest": {"condition": "", "maxRuns": 100}, "advice": "

It is helpful to draw the one-dimensional phase flow for systems of this type.

\n

a)

\n

The ODE in this part can be written in the general form

\n

\\[\\dot{x}=f(x)=rx\\left(1-\\frac{x}{a}\\right),\\]

\n

where $r=\\var{r1}$ and $a=\\var{a1}$.

\n

The system has fixed points at $x=0$ and $x=a$, and the function $f(x)$ is a parabola.

\n

If $r>0$, then the function (with phase flow as arrows) is as shown below.

\n

\n

If $r<0$, then the function (with phase flow as arrows) is as shown below.

\n

\n

Hence:

\n \n

\n

If $r>0$, then $x_0=0$ is unstable and $x_0=a$ is stable.

\n

If $r<0$, then $x_0=0$ is stable and $x_0=a$ is unstable.

\n

For the particular values of $r$ and $a$ in this part $x\\rightarrow\\var{ans1}$ as $t\\rightarrow\\infty$.

\n

\n

b)

\n

The ODE in this part can be written in the general form

\n

\\[\\dot{x}=g(x)=rx(a-x)(x-b),\\]

\n

where $r=\\var{r2}$, $a=\\var{a2}$, and $b=\\var{b2}$.

\n

The system has fixed points at $x=0$, $x=a$, and $x=b$, and the function $g(x)$ is a cubic.

\n

If $r>0$, then the function (with phase flow as arrows) is as shown below.

\n

\n

If $r<0$, then the function (with phase flow as arrows) is as shown below.

\n

\n

Hence:

\n \n

\n

If $r>0$, then $x_0=0$ and $x_0=b$ are stable, and $x_0=a$ is unstable.

\n

If $r<0$, then $x_0=0$ and $x_0=b$ are unstable, and $x_0=a$ is stable.

\n

For the particular values of $r$, $a$, and $b$ in this part $x\\rightarrow\\var{ans2}$ as $t\\rightarrow\\infty$.

", "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}]}]}], "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}]}