// Numbas version: finer_feedback_settings {"name": "Interpret Minitab output of multiple regression", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"variable_groups": [], "variables": {"tol": {"templateType": "anything", "group": "Ungrouped variables", "definition": "0.001", "description": "", "name": "tol"}, "pred": {"templateType": "anything", "group": "Ungrouped variables", "definition": "precround(ansa +cb*thatmany+ansc*thismany/1000+ansd*q,1)", "description": "", "name": "pred"}, "thismany": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(5000..12000#1000)", "description": "", "name": "thismany"}, "thatmany": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(2..8)", "description": "", "name": "thatmany"}, "thisrest": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(\"McDonald's\",\"Pizza Hut\",\"Kentucky Fried Chicken\",\"The Log Fire Pizza Co.\",\"The China Cook\",\"Aneesa's Indian Buffet\",\"Pacino's Italian Restaurant\")", "description": "", "name": "thisrest"}, "sv": {"templateType": "anything", "group": "Ungrouped variables", "definition": "[if(ind=6,\"Rubbish\",\" \"),\"Below Average\",\"Average\",\"Above Average\",\n if(ind=3,\" \",\"Good\"),if(ind>4,\"Fantastic\",\" \")]", "description": "", "name": "sv"}, "hascond": {"templateType": "anything", "group": "Ungrouped variables", "definition": "switch(q=1,cond,\n p=0,\"has not got a drive-thru window\",\n p=1,\"is not open late (after 11pm)\",\n p=2,\"is not located on a public transport route\",\n \"is not located in a town centre\")", "description": "", "name": "hascond"}, "se": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(0.03..0.15#0.0001)", "description": "", "name": "se"}, "si": {"templateType": "anything", "group": "Ungrouped variables", "definition": "precround(sval^2,3)", "description": "", "name": "si"}, "place": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(\"South Shields\", \"North Shields\",\"Newcastle\",\"Sunderland\",\"Alnwick\",\"Durham\",\"Metro Centre\")", "description": "", "name": "place"}, "p": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(0,1,2,3)", "description": "", "name": "p"}, "ansd": {"templateType": "anything", "group": "Ungrouped variables", "definition": "precround(2.53*sed,3)", "description": "", "name": "ansd"}, "q": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(0,1)", "description": "", "name": "q"}, "sea": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(3..5.5#0.001)", "description": "", "name": "sea"}, "ansa": {"templateType": "anything", "group": "Ungrouped variables", "definition": "precround(3.887*sea,3)", "description": "", "name": "ansa"}, "sed": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(1..2.20#0.001)", "description": "", "name": "sed"}, "cb": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(-0.5..-0.1#0.0001)", "description": "", "name": "cb"}, "cond": {"templateType": "anything", "group": "Ungrouped variables", "definition": "if(p=0,\"has got a drive-thru window\" ,if(p=1,\"is open late (after 11pm)\",if(p=2,\"is located on a public transport route\",\"is located in a town centre\")))", "description": "", "name": "cond"}, "ansc": {"templateType": "anything", "group": "Ungrouped variables", "definition": "precround(3.82*se,3)", "description": "", "name": "ansc"}, "ansb": {"templateType": "anything", "group": "Ungrouped variables", "definition": "precround(abs(cb)/2.64,3)", "description": "", "name": "ansb"}, "ind": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(3,4,5,6)", "description": "", "name": "ind"}, "sval": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(0.2..0.9#0.000001)", "description": "", "name": "sval"}}, "ungrouped_variables": ["cb", "sed", "cond", "sea", "ind", "pred", "sval", "tol", "thisrest", "thismany", "ansa", "ansb", "ansc", "ansd", "thatmany", "sv", "hascond", "q", "p", "si", "place", "se"], "question_groups": [{"pickingStrategy": "all-ordered", "questions": [], "name": "", "pickQuestions": 0}], "name": "Interpret Minitab output of multiple regression", "functions": {}, "showQuestionGroupNames": false, "parts": [{"scripts": {}, "gaps": [{"displayType": "radiogroup", "choices": ["

$X_1$

", "

$X_2$

", "

$X_3$

"], "displayColumns": 0, "distractors": ["", "", ""], "shuffleChoices": true, "scripts": {}, "minMarks": 0, "type": "1_n_2", "maxMarks": 0, "showCorrectAnswer": true, "matrix": [0, 0, 1], "marks": 0}], "type": "gapfill", "prompt": "

Which of these variables is an indicator variable?

\n

[[0]]

", "showCorrectAnswer": true, "marks": 0}, {"scripts": {}, "gaps": [{"showCorrectAnswer": true, "allowFractions": false, "scripts": {}, "type": "numberentry", "maxValue": "ansa+tol", "minValue": "ansa-tol", "correctAnswerFraction": false, "marks": 1, "showPrecisionHint": false}, {"showCorrectAnswer": true, "allowFractions": false, "scripts": {}, "type": "numberentry", "maxValue": "ansb+tol", "minValue": "ansb-tol", "correctAnswerFraction": false, "marks": 1, "showPrecisionHint": false}, {"showCorrectAnswer": true, "allowFractions": false, "scripts": {}, "type": "numberentry", "maxValue": "ansc+tol", "minValue": "ansc-tol", "correctAnswerFraction": false, "marks": 1, "showPrecisionHint": false}, {"showCorrectAnswer": true, "allowFractions": false, "scripts": {}, "type": "numberentry", "maxValue": "ansd+tol", "minValue": "ansd-tol", "correctAnswerFraction": false, "marks": 1, "showPrecisionHint": false}, {"showCorrectAnswer": true, "allowFractions": false, "scripts": {}, "type": "numberentry", "maxValue": "ansa+tol", "minValue": "ansa-tol", "correctAnswerFraction": false, "marks": 1, "showPrecisionHint": false}, {"showCorrectAnswer": true, "allowFractions": false, "scripts": {}, "type": "numberentry", "maxValue": "ansc+tol", "minValue": "ansc-tol", "correctAnswerFraction": false, "marks": 1, "showPrecisionHint": false}, {"showCorrectAnswer": true, "allowFractions": false, "scripts": {}, "type": "numberentry", "maxValue": "ansd+tol", "minValue": "ansd-tol", "correctAnswerFraction": false, "marks": 1, "showPrecisionHint": false}, {"showCorrectAnswer": true, "allowFractions": false, "scripts": {}, "type": "numberentry", "maxValue": "si+tol", "minValue": "si-tol", "correctAnswerFraction": false, "marks": 1, "showPrecisionHint": false}], "type": "gapfill", "prompt": "

Based on a recent survey of some of the restaurants in the North-East, the following (edited) Minitab output was obtained:

\n

Regression Analysis: $y$ versus $x_1,\\;x_2,\\;x_3$

\n

The regression equation is: y = ********

\n

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
\n

Predictor

\n
\n

Coef

\n
\n

SE Coef

\n
\n

T

\n
\n

P

\n
\n

Constant

\n
\n

$A$

\n
\n

{sea}

\n
\n

3.887

\n
\n

0.002$

\n
\n

$x_1$

\n
\n

{cb}

\n
\n

$B$

\n
\n

-2.64

\n
\n

0.021

\n
\n

$x_2$

\n
\n

$C$

\n
\n

{se}

\n
\n

3.82

\n
\n

0.002

\n
\n

$x_3$

\n
\n

$D$

\n
\n

{sed}

\n
\n

2.53

\n
\n

0.024

\n
\n

s={sval}       R-sq= 92.1%      R-Sq(adj)=93.9%

\n

(i) Find the values of $A,\\;B,\\;C$ and $D$ to 3 decimal places.

\n

$A=\\;$[[0]],   $B=\\;$[[1]]

\n

$C=\\;$[[2]],   $D=\\;$[[3]]

\n

(ii) Write down the full fitted regression equation: 

\n

\\[Y = \\beta_0+ \\beta_1 X_1 + \\beta_2 X_2 + \\beta_3X_3 + \\epsilon,\\;\\;\\epsilon \\sim N(0,\\sigma^2)\\]

\n

$Y=\\;$[[4]]-$\\var{abs(cb)}X_1$+[[5]]$X_2$+[[6]]$X_3+\\epsilon$

\n

Note that you are given  the coefficient of $X_1$ from the Minitab table.

\n

Also find   $\\sigma^2=\\;$[[7]]  to 3 decimal places where $\\epsilon \\sim N(0,\\sigma^2)$

", "showCorrectAnswer": true, "marks": 0}, {"scripts": {}, "gaps": [{"showCorrectAnswer": true, "allowFractions": false, "scripts": {}, "type": "numberentry", "maxValue": "pred+0.1", "minValue": "pred-0.1", "correctAnswerFraction": false, "marks": 1, "showPrecisionHint": false}], "type": "gapfill", "prompt": "

Predict sales for a restaurant with {thatmany} competitors, a population of {thismany} within 1 kilometre and that {hascond}.

\n

Enter the predicted value to one decimal place:

\n

$Y=\\;$[[0]]

", "showCorrectAnswer": true, "marks": 0}, {"scripts": {}, "gaps": [{"showCorrectAnswer": true, "allowFractions": false, "scripts": {}, "type": "numberentry", "maxValue": "ind-1", "minValue": "ind-1", "correctAnswerFraction": false, "marks": 1, "showPrecisionHint": false}], "type": "gapfill", "prompt": "

It is thought that a fourth variable - customer satisfaction based on a recent survey - could also be a predictor of sales.

\n

Each of the restaurants was given an overall satisfaction rating by choosing one of the following in the survey:

\n

{sv[0]}   {sv[1]}   {sv[2]}   {sv[3]}   {sv[4]}   {sv[5]}

\n

How many indicator variables would need to be used here?: [[0]]

", "showCorrectAnswer": true, "marks": 0}], "statement": "

The management at {thisrest} propose the following model to predict sales  Y at their {place} branch.

\n

\\[Y = \\beta_0+ \\beta_1 X_1 + \\beta_2 X_2 + \\beta_3X_3 + \\epsilon\\]

\n

where 

\n

$X_1=\\;$number of competitors within one kilometre.

\n

$X_2=\\;$population within one kilometre (in 1000s).

\n

$X_3=\\;$ 1 if {cond}, 0 otherwise.

", "tags": ["ACE2013", "checked2015", "indicator variables", "minitab output", "multiple regression", "regression", "regression equation", "statistics"], "rulesets": {}, "preamble": {"css": ".minitab {\nfont-family: 'Courier', monospace;\n}", "js": ""}, "type": "question", "metadata": {"notes": "

09/02/2014:

\n

First draft. Based on an i-assess question for ACE.

", "licence": "Creative Commons Attribution 4.0 International", "description": "

Asking users to interpret a minitab output to give the coefficients of a multiple regression together with a prediction based on the subsequent equation.

"}, "variablesTest": {"condition": "", "maxRuns": 100}, "advice": "

a) $X_3$ is the indicator variable.

\n

b)

\n

\n

(i) The values of A, B, C and D are given by:

\n

A = 3.887 x SE Coef (A) = 3.887 x {sea} = {ansa} to 3 decimal places.

\n

B = Coef (B)/-2.64 = {cb}/-2.64 = {ansb} to 3 decimal places.

\n

C = 3.82 x SE Coef (C) = 3.82 x {se} = {ansc} to 3 decimal places.

\n

D = 2.53 x SE Coef (D) = 2.53 x {sed} = {ansd} to 3 decimal places.

\n

ii) The fitted regression equation is:

\n

\\[Y=\\var{ansa}-\\var{abs(cb)}X_1+\\var{ansc}X_2+\\var{ansd}X_3+\\epsilon\\] with $\\sigma^2=\\var{sval}^2=\\var{si}$ all to 3 decimal places.

\n

c)

\n

\n

Using the above fitted model where $X_1=\\var{thatmany}$ and $X_2= \\frac{\\var{thismany}}{1000}=\\var{thismany/1000}$ and since $X_3=\\var{q}$ as the restaurant {hascond} we find :

\n

\\[Y=\\var{ansa}-\\var{abs(cb)}\\times \\var{thatmany}+\\var{ansc}\\times \\var{thismany/1000}+\\var{ansd}\\times \\var{q}=\\var{pred}\\] to one decimal place.

\n

d)

\n

There are {ind} categories in the survey and so the number of indicator variables is {ind}-1={ind-1}.

", "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}]}]}], "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}]}