// Numbas version: finer_feedback_settings {"name": "Interpret Minitab output of AR(1) model", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"variable_groups": [], "variables": {"fo": {"templateType": "anything", "group": "Ungrouped variables", "definition": "if(fo1=me, fo1+random(40..60),fo1)", "description": "", "name": "fo"}, "tol": {"templateType": "anything", "group": "Ungrouped variables", "definition": "0", "description": "", "name": "tol"}, "fo1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "(u*(me-2*mese)+(100-u)*(me+2*mese))/100", "description": "", "name": "fo1"}, "a": {"templateType": "anything", "group": "Ungrouped variables", "definition": "precround(2.18*sea,2)", "description": "", "name": "a"}, "c": {"templateType": "anything", "group": "Ungrouped variables", "definition": "precround(-0.12*sed,2)", "description": "", "name": "c"}, "sea": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(0.05..0.45#0.05)", "description": "", "name": "sea"}, "fo3": {"templateType": "anything", "group": "Ungrouped variables", "definition": "precround(afo3,2)", "description": "", "name": "fo3"}, "u": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(10..100)", "description": "", "name": "u"}, "afo4": {"templateType": "anything", "group": "Ungrouped variables", "definition": "me+a*(fo3-me)", "description": "", "name": "afo4"}, "sed": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(10..150#5)", "description": "", "name": "sed"}, "per": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(25..70)", "description": "", "name": "per"}, "afo3": {"templateType": "anything", "group": "Ungrouped variables", "definition": "me+a*(fo2-me)", "description": "", "name": "afo3"}, "me": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(50..150#10)", "description": "", "name": "me"}, "fo2": {"templateType": "anything", "group": "Ungrouped variables", "definition": "precround(afo2,2)", "description": "", "name": "fo2"}, "fo4": {"templateType": "anything", "group": "Ungrouped variables", "definition": "precround(afo4,2)", "description": "", "name": "fo4"}, "afo2": {"templateType": "anything", "group": "Ungrouped variables", "definition": "me+a*(fo -me)", "description": "", "name": "afo2"}, "mese": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(100..300#10)", "description": "", "name": "mese"}}, "ungrouped_variables": ["me", "a", "c", "fo1", "afo2", "fo2", "fo3", "per", "afo4", "sed", "u", "mese", "tol", "afo3", "fo4", "sea", "fo"], "question_groups": [{"pickingStrategy": "all-ordered", "questions": [], "name": "", "pickQuestions": 0}], "name": "Interpret Minitab output of AR(1) model", "functions": {}, "showQuestionGroupNames": false, "parts": [{"scripts": {}, "gaps": [{"showCorrectAnswer": true, "allowFractions": false, "scripts": {}, "type": "numberentry", "maxValue": "a+tol", "minValue": "a-tol", "correctAnswerFraction": false, "marks": 1, "showPrecisionHint": false}, {"showCorrectAnswer": true, "allowFractions": false, "scripts": {}, "type": "numberentry", "maxValue": "c+tol", "minValue": "c-tol", "correctAnswerFraction": false, "marks": 1, "showPrecisionHint": false}], "type": "gapfill", "prompt": "
Input the values of X and Y:
\nX= [[0]] (to 2 decimal places).
\nY= [[1]] (to 2 decimal places).
", "showCorrectAnswer": true, "marks": 0}, {"scripts": {}, "gaps": [{"showCorrectAnswer": true, "allowFractions": false, "scripts": {}, "type": "numberentry", "maxValue": "me", "minValue": "me", "correctAnswerFraction": false, "marks": 1, "showPrecisionHint": false}, {"showCorrectAnswer": true, "allowFractions": false, "scripts": {}, "type": "numberentry", "maxValue": "a", "minValue": "a", "correctAnswerFraction": false, "marks": 1, "showPrecisionHint": false}, {"showCorrectAnswer": true, "allowFractions": false, "scripts": {}, "type": "numberentry", "maxValue": "me", "minValue": "me", "correctAnswerFraction": false, "marks": 1, "showPrecisionHint": false}], "type": "gapfill", "prompt": "The estimated model has the following form:
\n\\[Y_t=a+b(Y_{t-1}-c)+\\epsilon_t\\]
\nFind $a=\\;$[[0]] $b=\\;$[[1]] $c=\\;$[[2]]
", "showCorrectAnswer": true, "marks": 0}, {"scripts": {}, "gaps": [{"showCorrectAnswer": true, "allowFractions": false, "scripts": {}, "type": "numberentry", "maxValue": "fo2", "minValue": "fo2", "correctAnswerFraction": false, "marks": 1, "showPrecisionHint": false}, {"showCorrectAnswer": true, "allowFractions": false, "scripts": {}, "type": "numberentry", "maxValue": "fo3", "minValue": "fo3", "correctAnswerFraction": false, "marks": 1, "showPrecisionHint": false}, {"showCorrectAnswer": true, "allowFractions": false, "scripts": {}, "type": "numberentry", "maxValue": "fo4", "minValue": "fo4", "correctAnswerFraction": false, "marks": 1, "showPrecisionHint": false}], "type": "gapfill", "prompt": "Use your model above to complete the following (edited ) output from Minitab:
\n(Calculate each forecast to 2 decimal places, then use this value to 2 decimal places to calculate the next forecast.)
\n
Forecast from period {per}:
Period | \nForecast | \n
{per+1} | \n{fo} | \n
{per+2} | \n[[0]] | \n
{per+3} | \n[[1]] | \n
{per+4} | \n[[2]] | \n
Minitab was used to fit an AR(1) model to a stationary series. The following output was obtained:
\n\nFINAL ESTIMATE OF PARAMETERS
\nType | \nCoef | \nSE Coef | \nT | \nP | \n
AR 1 | \nX | \n{sea} | \n2.18 | \n0.034 | \n
Constant | \nY | \n{sed} | \n-0.12 | \n0.902 | \n
Mean | \n{me} | \n{mese} | \n\n | \n |
22/03/2014:
\nCreated.
", "licence": "Creative Commons Attribution 4.0 International", "description": "Minitab was used to fit an AR(1) model to a stationary time series. Given the output answer the following questions about the model and use the model to make forecasts.
"}, "variablesTest": {"condition": "", "maxRuns": 100}, "advice": "a)
\nFrom the table we have $\\displaystyle \\frac{X}{\\var{sea}}=2.18$.
\nHence we find $X=\\var{sea}\\times 2.18=\\var{a}$ to 2 decimal places.
\nSimilarly we have $\\displaystyle \\frac{Y}{\\var{sed}}=-0.12$
\nHence we find $Y=\\var{sed}\\times -0.12=\\var{c}$ to 2 decimal places.
\nb)
\nThe model is
\n\\[Y_t= \\var{me}+\\var{a}(Y_{t-1}-\\var{me})+\\epsilon_t.\\]
\nSo $a=\\var{me},\\;\\;b=\\var{a},\\;\\;c=\\var{me}$.
\nc)
\nPutting $Y_{\\var{per+1}}=\\var{fo1}$ we find:
\n\\[Y_{\\var {per + 2}} = \\var{me} + \\var{a} (Y_{\\var{per + 1}} -\\var{me}) = \\var{me} + \\var{a} \\times (\\var{fo1} -\\var{me}) = \\var{fo2}\\] to 2 decimal places.
\nUsing this value to 2dps we have:
\n\\[Y_{\\var {per + 3}} = \\var{me} + \\var{a} (Y_{\\var{per + 2}} -\\var{me}) = \\var{me} + \\var{a} \\times (\\var{fo2} -\\var{me}) = \\var{fo3}\\] to 2 decimal places.
\nFinally using this last value we have:
\n\\[Y_{\\var {per + 4}} = \\var{me} + \\var{a} (Y_{\\var{per + 3}} -\\var{me}) = \\var{me} + \\var{a} \\times (\\var{fo3} -\\var{me}) = \\var{fo4}\\] to 2 decimal places.
\nIn summary we have.
\nForecast from period {per}:
\n\nPeriod | \nForecast | \n
{per+1} | \n{fo1} | \n
{per+2} | \n{fo2} | \n
{per+3} | \n{fo3} | \n
{per+4} | \n{fo4} | \n