// Numbas version: finer_feedback_settings {"name": "Interpret Minitab output of AR(1) model", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"variable_groups": [], "variables": {"fo": {"templateType": "anything", "group": "Ungrouped variables", "definition": "if(fo1=me, fo1+random(40..60),fo1)", "description": "", "name": "fo"}, "tol": {"templateType": "anything", "group": "Ungrouped variables", "definition": "0", "description": "", "name": "tol"}, "fo1": {"templateType": "anything", "group": "Ungrouped variables", "definition": "(u*(me-2*mese)+(100-u)*(me+2*mese))/100", "description": "", "name": "fo1"}, "a": {"templateType": "anything", "group": "Ungrouped variables", "definition": "precround(2.18*sea,2)", "description": "", "name": "a"}, "c": {"templateType": "anything", "group": "Ungrouped variables", "definition": "precround(-0.12*sed,2)", "description": "", "name": "c"}, "sea": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(0.05..0.45#0.05)", "description": "", "name": "sea"}, "fo3": {"templateType": "anything", "group": "Ungrouped variables", "definition": "precround(afo3,2)", "description": "", "name": "fo3"}, "u": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(10..100)", "description": "", "name": "u"}, "afo4": {"templateType": "anything", "group": "Ungrouped variables", "definition": "me+a*(fo3-me)", "description": "", "name": "afo4"}, "sed": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(10..150#5)", "description": "", "name": "sed"}, "per": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(25..70)", "description": "", "name": "per"}, "afo3": {"templateType": "anything", "group": "Ungrouped variables", "definition": "me+a*(fo2-me)", "description": "", "name": "afo3"}, "me": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(50..150#10)", "description": "", "name": "me"}, "fo2": {"templateType": "anything", "group": "Ungrouped variables", "definition": "precround(afo2,2)", "description": "", "name": "fo2"}, "fo4": {"templateType": "anything", "group": "Ungrouped variables", "definition": "precround(afo4,2)", "description": "", "name": "fo4"}, "afo2": {"templateType": "anything", "group": "Ungrouped variables", "definition": "me+a*(fo -me)", "description": "", "name": "afo2"}, "mese": {"templateType": "anything", "group": "Ungrouped variables", "definition": "random(100..300#10)", "description": "", "name": "mese"}}, "ungrouped_variables": ["me", "a", "c", "fo1", "afo2", "fo2", "fo3", "per", "afo4", "sed", "u", "mese", "tol", "afo3", "fo4", "sea", "fo"], "question_groups": [{"pickingStrategy": "all-ordered", "questions": [], "name": "", "pickQuestions": 0}], "name": "Interpret Minitab output of AR(1) model", "functions": {}, "showQuestionGroupNames": false, "parts": [{"scripts": {}, "gaps": [{"showCorrectAnswer": true, "allowFractions": false, "scripts": {}, "type": "numberentry", "maxValue": "a+tol", "minValue": "a-tol", "correctAnswerFraction": false, "marks": 1, "showPrecisionHint": false}, {"showCorrectAnswer": true, "allowFractions": false, "scripts": {}, "type": "numberentry", "maxValue": "c+tol", "minValue": "c-tol", "correctAnswerFraction": false, "marks": 1, "showPrecisionHint": false}], "type": "gapfill", "prompt": "

Input the values of X and Y:

\n

X= [[0]]  (to 2 decimal places).

\n

Y= [[1]]  (to 2 decimal places).

", "showCorrectAnswer": true, "marks": 0}, {"scripts": {}, "gaps": [{"showCorrectAnswer": true, "allowFractions": false, "scripts": {}, "type": "numberentry", "maxValue": "me", "minValue": "me", "correctAnswerFraction": false, "marks": 1, "showPrecisionHint": false}, {"showCorrectAnswer": true, "allowFractions": false, "scripts": {}, "type": "numberentry", "maxValue": "a", "minValue": "a", "correctAnswerFraction": false, "marks": 1, "showPrecisionHint": false}, {"showCorrectAnswer": true, "allowFractions": false, "scripts": {}, "type": "numberentry", "maxValue": "me", "minValue": "me", "correctAnswerFraction": false, "marks": 1, "showPrecisionHint": false}], "type": "gapfill", "prompt": "

The estimated model has the following form:

\n

\\[Y_t=a+b(Y_{t-1}-c)+\\epsilon_t\\]

\n

Find $a=\\;$[[0]]    $b=\\;$[[1]]    $c=\\;$[[2]]

", "showCorrectAnswer": true, "marks": 0}, {"scripts": {}, "gaps": [{"showCorrectAnswer": true, "allowFractions": false, "scripts": {}, "type": "numberentry", "maxValue": "fo2", "minValue": "fo2", "correctAnswerFraction": false, "marks": 1, "showPrecisionHint": false}, {"showCorrectAnswer": true, "allowFractions": false, "scripts": {}, "type": "numberentry", "maxValue": "fo3", "minValue": "fo3", "correctAnswerFraction": false, "marks": 1, "showPrecisionHint": false}, {"showCorrectAnswer": true, "allowFractions": false, "scripts": {}, "type": "numberentry", "maxValue": "fo4", "minValue": "fo4", "correctAnswerFraction": false, "marks": 1, "showPrecisionHint": false}], "type": "gapfill", "prompt": "

Use your model above to complete the following (edited ) output from Minitab:

\n

(Calculate each forecast to 2 decimal places, then use this value to 2 decimal places  to calculate the next forecast.)

\n


Forecast from period {per}:

\n

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
PeriodForecast
{per+1}{fo}
{per+2}[[0]]
{per+3}[[1]]
{per+4}[[2]]
\n

", "showCorrectAnswer": true, "marks": 0}], "statement": "

Minitab was used to fit an AR(1) model to a stationary series. The following output was obtained:

\n

\n

FINAL ESTIMATE OF PARAMETERS

\n

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
TypeCoefSE CoefTP
AR 1X{sea}2.180.034
ConstantY{sed}-0.120.902
Mean{me}{mese}
", "tags": ["ACE2013", "AR(1)", "AR(1) model", "ARMA", "autoregression", "autoregressive", "checked2015", "forecast", "forecasting", "Minitab output", "minitab output", "models", "stationary series", "stationary time series", "statistics", "time series"], "rulesets": {}, "preamble": {"css": ".minitab {\nfont-family: 'Courier', monospace;\n}", "js": ""}, "type": "question", "metadata": {"notes": "

22/03/2014:

\n

Created.

", "licence": "Creative Commons Attribution 4.0 International", "description": "

Minitab was used to fit an AR(1) model to a stationary time series. Given the output answer the following questions about the model and use the model to make forecasts.

"}, "variablesTest": {"condition": "", "maxRuns": 100}, "advice": "

a)

\n

From the table we have $\\displaystyle \\frac{X}{\\var{sea}}=2.18$.

\n

Hence we find $X=\\var{sea}\\times 2.18=\\var{a}$ to 2 decimal places.

\n

Similarly we have  $\\displaystyle \\frac{Y}{\\var{sed}}=-0.12$

\n

Hence we find $Y=\\var{sed}\\times -0.12=\\var{c}$ to 2 decimal places.

\n

b)

\n

The model is 

\n

\\[Y_t= \\var{me}+\\var{a}(Y_{t-1}-\\var{me})+\\epsilon_t.\\]

\n

So $a=\\var{me},\\;\\;b=\\var{a},\\;\\;c=\\var{me}$.

\n

c)

\n

Putting $Y_{\\var{per+1}}=\\var{fo1}$ we find:

\n

\\[Y_{\\var {per + 2}} = \\var{me} + \\var{a}  (Y_{\\var{per + 1}} -\\var{me}) = \\var{me} + \\var{a} \\times (\\var{fo1} -\\var{me}) = \\var{fo2}\\] to 2 decimal places.

\n

Using this value to 2dps we have:

\n

\\[Y_{\\var {per + 3}} = \\var{me} + \\var{a}  (Y_{\\var{per + 2}} -\\var{me}) = \\var{me} + \\var{a} \\times (\\var{fo2} -\\var{me}) = \\var{fo3}\\] to 2 decimal places.

\n

Finally using this last value we have:

\n

\\[Y_{\\var {per + 4}} = \\var{me} + \\var{a}  (Y_{\\var{per + 3}} -\\var{me}) = \\var{me} + \\var{a} \\times (\\var{fo3} -\\var{me}) = \\var{fo4}\\] to 2 decimal places.

\n

In summary we have.

\n

Forecast from period {per}:

\n

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
PeriodForecast
{per+1}{fo1}
{per+2}{fo2}
{per+3}{fo3}
{per+4}{fo4}
", "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}]}]}], "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}]}