// Numbas version: finer_feedback_settings {"name": "Solve a pair of simultaneous equations", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"variable_groups": [], "variables": {"s1": {"group": "Ungrouped variables", "templateType": "anything", "definition": "random(1,-1)", "name": "s1", "description": ""}, "aort": {"group": "Ungrouped variables", "templateType": "anything", "definition": "if(b*b1>0,'take away the equation','add the equation')", "name": "aort", "description": ""}, "b": {"group": "Ungrouped variables", "templateType": "anything", "definition": "sb*random(1..9)", "name": "b", "description": ""}, "c": {"group": "Ungrouped variables", "templateType": "anything", "definition": "sc*random(1..9)", "name": "c", "description": ""}, "sc": {"group": "Ungrouped variables", "templateType": "anything", "definition": "random(1,-1)", "name": "sc", "description": ""}, "sc1": {"group": "Ungrouped variables", "templateType": "anything", "definition": "random(1,-1)", "name": "sc1", "description": ""}, "b1": {"group": "Ungrouped variables", "templateType": "anything", "definition": "if(a*b2=a1*b,b2+1,b2)", "name": "b1", "description": ""}, "fromorto": {"group": "Ungrouped variables", "templateType": "anything", "definition": "if(b*b1>0,'from','to')", "name": "fromorto", "description": ""}, "that": {"group": "Ungrouped variables", "templateType": "anything", "definition": "lcm(abs(b),abs(b1))/abs(b1)", "name": "that", "description": ""}, "sb": {"group": "Ungrouped variables", "templateType": "anything", "definition": "random(1,-1)", "name": "sb", "description": ""}, "b2": {"group": "Ungrouped variables", "templateType": "anything", "definition": "random(2..9)", "name": "b2", "description": ""}, "this": {"group": "Ungrouped variables", "templateType": "anything", "definition": "lcm(abs(b),abs(b1))/abs(b)", "name": "this", "description": ""}, "c1": {"group": "Ungrouped variables", "templateType": "anything", "definition": "sc1*random(1..9)", "name": "c1", "description": ""}, "s6": {"group": "Ungrouped variables", "templateType": "anything", "definition": "if(b*b1>0,-1,1)", "name": "s6", "description": ""}, "a": {"group": "Ungrouped variables", "templateType": "anything", "definition": "sa*random(2..9)", "name": "a", "description": ""}, "a1": {"group": "Ungrouped variables", "templateType": "anything", "definition": "switch(a2=2,random(3,5,7,9),a2=3,random(2,4,5,7),a2=4,random(3,5,7,9),a2=5,random(3,4,6,7,9),a2=6,random(4,5,7,8,9),a2=7,random(3,4,5,6,8,9),a2=8,random(3,5,6,7,9),a2=9,random(2,4,5,7,8),9)", "name": "a1", "description": ""}, "sa": {"group": "Ungrouped variables", "templateType": "anything", "definition": "random(1,-1)", "name": "sa", "description": ""}, "a2": {"group": "Ungrouped variables", "templateType": "anything", "definition": "abs(a)", "name": "a2", "description": ""}}, "ungrouped_variables": ["a", "c", "b", "that", "this", "sc1", "s1", "s6", "a1", "aort", "a2", "b1", "b2", "sc", "sb", "sa", "fromorto", "c1"], "question_groups": [{"pickingStrategy": "all-ordered", "questions": [], "name": "", "pickQuestions": 0}], "name": "Solve a pair of simultaneous equations", "showQuestionGroupNames": false, "functions": {}, "parts": [{"marks": 0, "scripts": {}, "gaps": [{"answer": "{c*b1-b*c1}/{b1*a-a1*b}", "vsetrange": [0, 1], "checkingaccuracy": 0.001, "checkvariablenames": false, "expectedvariablenames": [], "notallowed": {"showStrings": false, "message": "
Input as a fraction or an integer not as a decimal
", "strings": ["."], "partialCredit": 0}, "showpreview": true, "checkingtype": "absdiff", "scripts": {}, "answersimplification": "std", "type": "jme", "showCorrectAnswer": true, "marks": 2, "vsetrangepoints": 5}, {"answer": "{c*a1-a*c1}/{b*a1-a*b1}", "vsetrange": [0, 1], "checkingaccuracy": 0.001, "checkvariablenames": false, "expectedvariablenames": [], "notallowed": {"showStrings": false, "message": "Input as a fraction or an integer not as a decimal
", "strings": ["."], "partialCredit": 0}, "showpreview": true, "checkingtype": "absdiff", "scripts": {}, "answersimplification": "std", "type": "jme", "showCorrectAnswer": true, "marks": 2, "vsetrangepoints": 5}], "type": "gapfill", "showCorrectAnswer": true, "steps": [{"type": "information", "prompt": "", "showCorrectAnswer": true, "scripts": {}, "marks": 0}], "prompt": "\n\t\t\t\\[ \\begin{eqnarray} \\simplify[std]{{a}x+{b}y}&=&\\var{c}\\\\ \\simplify[std]{{a1}x+{b1}y}&=&\\var{c1} \\end{eqnarray} \\]
\n\t\t\t$x=\\phantom{{}}$[[0]], $y=\\phantom{{}}$[[1]]
\n\t\t\tInput your answers as fractions or integers, not as decimals.
\n\t\t\tSee \"Show steps\" for a video that describes a more direct method of solving when, for example, one of the equations gives a variable directly in terms of the other variable.
\n\t\t\t \n\t\t\t", "stepsPenalty": 0}], "statement": "Solve the following simultaneous equations for $x$ and $y$. Input your answers as fractions or integers, not as decimals.
", "tags": ["ACC1012", "checked2015", "equations", "linear", "pair of linear equations", "simultaneous", "simultaneous linear equations", "solve linear equations", "solving equations", "Solving equations", "video"], "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers", "!noLeadingMinus"]}, "preamble": {"css": "", "js": ""}, "type": "question", "metadata": {"notes": "\n\t\t \t\t \t\t \t\t \t\t \t\t \t\t5/08/2012:
\n\t\t \t\t \t\t \t\t \t\t \t\t \t\tAdded more tags.
\n\t\t \t\t \t\t \t\t \t\t \t\t \t\tAdded description.
\n\t\t \t\t \t\t \t\t \t\t \t\t \t\tChecked calculation. OK.
\n\t\t \t\t \t\t \t\t \t\t \t\t \n\t\t \t\t \t\t \t\t \t\t \n\t\t \t\t \t\t \t\t \n\t\t \t\t \t\t \n\t\t \t\t \n\t\t \n\t\t", "licence": "Creative Commons Attribution 4.0 International", "description": "Solve for $x$ and $y$: \\[ \\begin{eqnarray} a_1x+b_1y&=&c_1\\\\ a_2x+b_2y&=&c_2 \\end{eqnarray} \\]
\nThe included video describes a more direct method of solving when, for example, one of the equations gives a variable directly in terms of the other variable.
"}, "variablesTest": {"condition": "", "maxRuns": 100}, "advice": "\n\t\\[ \\begin{eqnarray} \\simplify[std]{{a}x+{b}y}&=&\\var{c}&\\mbox{ ........(1)}\\\\ \\simplify[std]{{a1}x+{b1}y}&=&\\var{c1}&\\mbox{ ........(2)} \\end{eqnarray} \\]
To get a solution for $x$ multiply equation (1) by {this} and equation (2) by {that}
This gives:
\\[ \\begin{eqnarray} \\simplify[std]{{a*this}x+{b*this}y}&=&\\var{this*c}&\\mbox{ ........(3)}\\\\ \\simplify[std]{{a1*that}x+{b1*that}y}&=&\\var{that*c1}&\\mbox{ ........(4)} \\end{eqnarray} \\]
Now {aort} (4) {fromorto} equation (3) to get
\\[\\simplify[std]{({a*this}+{s6*a1*that})x={this*c}+{s6*that*c1}}\\]
And so we get the solution for $x$:
\\[x = \\simplify{{c*b1-b*c1}/{b1*a-a1*b}}\\]
Substituting this value into any of the equations (1) and (2) gives:
\\[y = \\simplify{{c*a1-a*c1}/{b*a1-a*b1}}\\]
You can check that these solutions are correct by seeing if they satisfy both equations (1) and (2) by substituting these values into the equations.