// Numbas version: finer_feedback_settings {"name": "Solving exponential equations using logs", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Solving exponential equations using logs", "tags": ["exp", "exponential", "exponentials", "logarithm", "Logarithm", "Logarithms", "logarithms", "Logs", "logs", "solving", "solving equations", "Solving equations"], "metadata": {"description": "", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "", "advice": "

a) 

\n

We start solving the equation one operation at a time by doing the inverse to both sides, when we get to undoing the exponential we apply a log to both sides, we then use a log law and continue solving.

\n

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
$\\var{a}$$=$$\\simplify{{p}({b})^(n/{d})+{c}}$
$\\simplify{{a-c}}$$=$$\\simplify{{p}({b})^(n/{d})}$(subtract $\\var{c}$ from both sides) 
$\\var{frac}$$=$$\\simplify{{b}^(n/{d})}$(divide both sides by $\\var{p}$)
$\\log(\\var{frac})$$=$$\\log(\\var{b}^{\\frac{n}{\\var{d}}})$(take the log of both sides)
$=$ $\\frac{n}{\\var{d}}\\log(\\var{b})$(use a log law)
$\\displaystyle{\\frac{\\log(\\var{frac})}{\\log(\\var{b})}}$$=$$\\frac{n}{\\var{d}}$(divide both sides by $\\log(\\var{b})$)
$\\displaystyle{\\frac{\\var{d}\\log(\\var{frac})}{\\log(\\var{b})}}$$=$$n$(multiply both sides by $\\var{d}$)
\n

\n

b)

\n

We start solving the equation one operation at a time by doing the inverse to both sides, when we get to undoing the exponential we apply a log to both sides, we then use a log law and continue solving.

\n

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
${\\var{FV}}$$=$$\\displaystyle{\\simplify{{pay}((1+{int})^n-1)/{int}}}$
$\\simplify{{FV*int}}$$=$$\\displaystyle{\\simplify{{pay}((1+{int})^n-1)}}$(multiply both sides by $\\var{int}$) 
$\\displaystyle{\\simplify[simplifyFractions]{{FV*int}/{pay}}}$$=$$\\displaystyle{\\simplify{(1+{int})^n-1}}$(divide both sides by $\\var{pay}$)
$\\displaystyle{\\simplify[simplifyFractions]{{FV*int}/{pay}+1}}$$=$$\\displaystyle{\\simplify{(1+{int})^n}}$(add $1$ to both sides)
$\\displaystyle{\\simplify[simplifyFractions]{{FV*int+pay}/{pay}}}$$=$ $\\displaystyle{\\simplify{(1+{int})^n}}$(tidy up left hand side)
$\\displaystyle{\\log\\left(\\simplify[simplifyFractions]{{FV*int+pay}/{pay}}\\right)}$$=$$\\displaystyle{\\log\\left((\\var{1+int})^n\\right)}$(take the log of both sides)
$\\displaystyle{\\log\\left(\\simplify[simplifyFractions]{{FV*int+pay}/{pay}}\\right)}$$=$$\\displaystyle{n\\log(\\var{1+int})}$(use a log law)
$\\displaystyle{\\frac{\\log\\left(\\simplify[simplifyFractions]{{FV*int+pay}/{pay}}\\right)}{\\log(\\var{1+int})}}$$=$$n$(divide both sides by $\\log(\\var{1+int})$)
", "rulesets": {}, "extensions": [], "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"test": {"name": "test", "group": "b", "definition": "fv*int/pay", "description": "", "templateType": "anything", "can_override": false}, "periods": {"name": "periods", "group": "b", "definition": "log(FV*int/pay+1)/log(1+int)", "description": "", "templateType": "anything", "can_override": false}, "logb": {"name": "logb", "group": "Ungrouped variables", "definition": "log(b)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(1.05..1.5#0.05)", "description": "", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(1000..2000#20)", "description": "", "templateType": "anything", "can_override": false}, "logfrac": {"name": "logfrac", "group": "Ungrouped variables", "definition": "log(frac)", "description": "", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "random(20..a-10#20)", "description": "", "templateType": "anything", "can_override": false}, "frac": {"name": "frac", "group": "Ungrouped variables", "definition": "(a-c)/p", "description": "", "templateType": "anything", "can_override": false}, "n": {"name": "n", "group": "Ungrouped variables", "definition": "d*logfrac/logb", "description": "", "templateType": "anything", "can_override": false}, "int": {"name": "int", "group": "b", "definition": "random(0.01..0.10#0.01)", "description": "", "templateType": "anything", "can_override": false}, "d": {"name": "d", "group": "Ungrouped variables", "definition": "random(2,4,3,12,26,52)", "description": "", "templateType": "anything", "can_override": false}, "p": {"name": "p", "group": "Ungrouped variables", "definition": "random(2,5,10,20,(a-c)/2,(a-c)/5,(a-c)/10,(a-c)/20)", "description": "", "templateType": "anything", "can_override": false}, "pay": {"name": "pay", "group": "b", "definition": "random(100..2000#100)", "description": "", "templateType": "anything", "can_override": false}, "amc": {"name": "amc", "group": "Ungrouped variables", "definition": "a-c", "description": "", "templateType": "anything", "can_override": false}, "FV": {"name": "FV", "group": "b", "definition": "random(20000..100000#500)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "p", "c", "b", "frac", "logfrac", "logb", "d", "amc", "n"], "variable_groups": [{"name": "b", "variables": ["FV", "pay", "int", "periods", "test"]}], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Solve the following equation for $n$

\n

$\\begin{align*}\\simplify{{a}={p}({b})^(n/{d})+{c}}.\\end{align*}$

\n

\n

$n=$ [[0]]

\n

\n

Note: Typing $\\log(5)$ will input the value $\\log_{10}(5)$, whereas $\\log5$ will not work.
Note: Typing $\\ln(5)$ will input the value $\\log_e(5)$, whereas $\\ln5$ will not work.

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{d}*log({frac})/log({b})", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Solve the following equation for $n$

\n

$\\displaystyle{\\simplify{{FV}={pay}((1+{int})^n-1)/{int}}}.$

\n

\n

$n=$ [[0]]

\n

\n

Note: Typing $\\log(5)$ will input the value $\\log_{10}(5)$, whereas $\\log5$ will not work.
Note: Typing $\\ln(5)$ will input the value $\\log_e(5)$, whereas $\\ln5$ will not work.

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "log({FV*int+pay}/{pay})/log({1+int})", "answerSimplification": "simplifyFractions", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question", "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}]}]}], "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}]}