// Numbas version: exam_results_page_options {"name": "Integration: Solving Separable Differential Equations - Radioactive Decay", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Integration: Solving Separable Differential Equations - Radioactive Decay", "tags": [], "metadata": {"description": "

Solving a separable differential equation that describes the rate of decay of radioactive isotopes over time with a known initial condition to calculate the mass of the isotope after a given time and the time taken for the mass to reach $m$ grams. 

\n

Decay Constant - Radioactivity - Nuclear Power (nuclear-power.com)

", "licence": "None specified"}, "statement": "

The rate of decay of the radioactive isotope $\\var{isotopes_names[j]}$ is given by:

\n

\\[\\frac{\\mathrm{d}M}{\\mathrm{d}t}=-\\var{lambda}M\\]

\n

where $M$ is the mass of the isotope in grams and $t$ is time measured in $\\var{timescale[j]}$.
A sample initially contains $\\var{m0}$ grams of the isotope.

", "advice": "

a) To calculate the mass of the isotope at a specific time, we need an expression for how the mass, $M$, changes in terms of time, $t$. This is given by the differential equation,

\n

\\[\\frac{\\mathrm{d}M}{\\mathrm{d}t}=-\\var{lambda}M\\]

\n

which we can solve using separation of variables.

\n

First we need to separate the variables between the two sides:

\n

\\[\\frac{1}{M}dM=-\\var{lambda}dt\\]

\n

Now we can integrate both sides: 

\n

\\[ \\begin{split} \\int\\frac{1}{M}dM&=\\int -\\var{lambda}dt \\\\ \\ln{M}&= -\\var{lambda}t + c \\end{split} \\]

\n

Taking the exponential of both sides:

\n

\\[ \\begin{split} M&= e^{ -\\var{lambda}t + c} \\\\ M&=e^c\\times e^{-\\var{lambda}t }\\end{split} \\]

\n

Now, $e^c$ is a constant which we can calculate using the initial contition that $m=\\var{m0}$ when $t=0$. By substituting in the values in the equation we get:

\n

\\[ \\begin{split}  \\var{m0}&=e^c\\times e^{-\\var{lambda}\\times 0 } \\\\ \\var{m0}&=e^c\\times e^0 \\\\ \\var{m0}&=e^c\\times 1 \\\\ \\var{m0}&=e^c \\end{split} \\]

\n

So, $e^c=\\var{m0}$. Therefore,

\n

\\[ \\begin{split} M&=\\var{m0} e^{-\\var{lambda}t }\\end{split} \\]

\n

We can now substitute $t=\\var{t1}$ to calculate the mass at that time: 

\n

\\[ \\begin{split} M&=\\var{m0} e^{-\\var{lambda} \\times \\var{t1} } \\\\ M&= \\var{m0}\\times e^{\\simplify{{-decayconstant[j]*t1}}}\\\\ M&= \\var{m0} \\times \\simplify{{e^(-decayconstant[j]*t1)}} = \\var{ansa} ~~\\text{[3 s.f.]} \\end{split} \\]

\n

b) To calculate how long it takes for the mass of the isotope in the sample to fall to $\\var{m1}$ gram, we will use the expression 

\n

\\[ \\begin{split} M&=\\var{m0} e^{-\\var{lambda}t }\\end{split} \\]

\n

found in part (a). We can substitute $M=\\var{m1}$ and solve the equation for t.

\n

\\[ \\begin{split} \\var{m1}&=\\var{m0} e^{-\\var{lambda}t } \\\\ \\frac{\\var{m1}}{\\var{m0}}&=e^{-\\var{lambda}t }\\end{split} \\]

\n

Taking $\\ln()$ of both sides:

\n

\\[ \\begin{split} \\ln \\left(\\frac{\\var{m1}}{\\var{m0}}\\right)&=-\\var{lambda}t \\\\ -\\frac{\\ln \\left(\\frac{\\var{m1}}{\\var{m0}}\\right)}{\\var{lambda}}&=t \\end{split} \\]

\n

Thus, $m=\\var{m1}$ when $t=\\var{ansb}$ {timescale[j]}.

", "rulesets": {}, "extensions": [], "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"lambda": {"name": "lambda", "group": "Ungrouped variables", "definition": "scientificnumberlatex( decayconstant[j])", "description": "", "templateType": "anything", "can_override": false}, "m0": {"name": "m0", "group": "Ungrouped variables", "definition": "random(2..10)", "description": "", "templateType": "anything", "can_override": false}, "t1": {"name": "t1", "group": "Ungrouped variables", "definition": "random (10..500 #10)", "description": "", "templateType": "anything", "can_override": false}, "m1": {"name": "m1", "group": "Ungrouped variables", "definition": "m0/2", "description": "", "templateType": "anything", "can_override": false}, "ansA": {"name": "ansA", "group": "Ungrouped variables", "definition": "siground(m0*exp(-decayconstant[j]*t1),3)", "description": "", "templateType": "anything", "can_override": false}, "ansB": {"name": "ansB", "group": "Ungrouped variables", "definition": "round (-ln(0.5)/decayconstant[j])", "description": "", "templateType": "anything", "can_override": false}, "timescale": {"name": "timescale", "group": "Ungrouped variables", "definition": "[ \"years\", \"years\", \"minutes\",\"seconds\"]", "description": "", "templateType": "anything", "can_override": false}, "isotopes_names": {"name": "isotopes_names", "group": "Ungrouped variables", "definition": "[\"Carbon 14\", \"Radium 226\", \"Free Neutron 239\", \"Radon 220\"]", "description": "", "templateType": "anything", "can_override": false}, "j": {"name": "j", "group": "Ungrouped variables", "definition": "random(0..3)", "description": "", "templateType": "anything", "can_override": false}, "DecayConstant": {"name": "DecayConstant", "group": "Ungrouped variables", "definition": "[ (1.24*10^(-4)) , 4.273*10^(-4) , 1.1*10^(-3) , 1.33*10^(-2) ]", "description": "", "templateType": "anything", "can_override": false}, "step1": {"name": "step1", "group": "Ungrouped variables", "definition": "-decayconstant[j]*t1", "description": "", "templateType": "anything", "can_override": false}, "step2": {"name": "step2", "group": "Ungrouped variables", "definition": "exp(step1)", "description": "", "templateType": "anything", "can_override": false}, "step3": {"name": "step3", "group": "Ungrouped variables", "definition": "m0*step2", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "(ansAWhat is the mass of the isotope present in the sample after $\\var{t1}$ $\\var{timescale[j]}$?

\n

The mass is [[0]]grams.

\n

Round your answer to 3 significant figures, if needed.

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{Ansa}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

How long does it take for the mass of the isotope in the sample to fall to $\\var{m1}$ gram?

\n

It takes $t=$[[0]]$\\var{timescale[j]}$.

\n

Round your answer to the nearest integer if needed.

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{ansb}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "contributors": [{"name": "Evi Papadaki", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18113/"}]}]}], "contributors": [{"name": "Evi Papadaki", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18113/"}]}