// Numbas version: finer_feedback_settings {"name": "Number of Stationary distributions", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Number of Stationary distributions", "tags": [], "metadata": {"description": "", "licence": "None specified"}, "statement": "
Do the following Markov chains have a unique stationary distribution?
", "advice": "| $0$ | \n$1$ | \n$0$ | \n$0$ | \n
| $0$ | \n$0$ | \n$1$ | \n$0$ | \n
| $0$ | \n$0$ | \n$0$ | \n$1$ | \n
| $1$ | \n$0$ | \n$0$ | \n$0$ | \n
Will have a unqiue stationary distribution $\\pi^T = [0.25, 0.25, 0.25, 0.25]$
\n| $0$ | \n$1$ | \n$0$ | \n$0$ | \n
| $1$ | \n$0$ | \n$0$ | \n$0$ | \n
| $0$ | \n$0$ | \n$0.5$ | \n$0.5$ | \n
| $0$ | \n$0$ | \n$0.5$ | \n$0.5$ | \n
Will not have a unique stationary distribution two examples are $\\pi^T = [0.5, 0.5, 0, 0]$ and $\\pi^T = [0, 0, 0.5, 0.5]$
", "rulesets": {}, "extensions": [], "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {"mark": {"script": "// Reveal answers, score and advice\nthis.display.revealAnswer();\nthis.display.showScore();\nNumbas.controls.getAdvice();", "order": "before"}}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "| $0$ | \n$1$ | \n$0$ | \n$0$ | \n
| $0$ | \n$0$ | \n$1$ | \n$0$ | \n
| $0$ | \n$0$ | \n$0$ | \n$1$ | \n
| $1$ | \n$0$ | \n$0$ | \n$0$ | \n
| $0$ | \n$1$ | \n$0$ | \n$0$ | \n
| $1$ | \n$0$ | \n$0$ | \n$0$ | \n
| $0$ | \n$0$ | \n$0.5$ | \n$0.5$ | \n
| $0$ | \n$0$ | \n$0.5$ | \n$0.5$ | \n