// Numbas version: finer_feedback_settings {"name": "Trigonometry: Right angled: Find approx side lengths", "extensions": ["jsxgraph"], "custom_part_types": [], "resources": [["question-resources/undefined_YwBJcjH", "/srv/numbas/media/question-resources/undefined_YwBJcjH"]], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Trigonometry: Right angled: Find approx side lengths", "tags": ["epphys", "JSXgraph", "Jsxgraph", "jsxgraph", "Triangle", "triangle", "trig", "trigonometry", "Trigonometry"], "metadata": {"description": "
A right-angled triangle is displayed either pointing left or right with one of the other angles and one of the sides given. Use SOH CAH TOA to find the side indicated with an x.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "", "advice": "Based on the sides that we have and are interested in we use
\n$\\sin \\theta = \\dfrac{\\text{opposite}}{\\text{hypotenuse}}$ $\\cos \\theta = \\dfrac{\\text{adjacent}}{\\text{hypotenuse}}$ $\\tan \\theta = \\dfrac{\\text{opposite}}{\\text{adjacent}}$
\nand substitute in the values that we have
\n$\\sin \\var{anglelist[0]}^\\circ = \\dfrac{\\var{v}}{\\var{d}}$. $\\cos \\var{anglelist[0]}^\\circ = \\dfrac{\\var{h}}{\\var{d}}$. $\\tan \\var{anglelist[0]}^\\circ= \\dfrac{\\var{v}}{\\var{h}}$. $\\sin \\var{anglelist[0]}^\\circ = \\dfrac{\\var{h}}{\\var{d}}$. $\\cos \\var{anglelist[0]}^\\circ = \\dfrac{\\var{v}}{\\var{d}}$. $\\tan \\var{anglelist[0]}^\\circ= \\dfrac{\\var{h}}{\\var{v}}$.
\nTo solve this equation for $x$ we multiply both sides of the equation by the denominator. To solve this equation for $x$ we multiply both sides of the equation by the denominator and then divide both sides of the equation by the trig term.
\n$x=\\dfrac{\\var{h}}{\\cos \\var{anglelist[0]}^\\circ}$ $x=\\var{d}\\cos \\var{anglelist[0]}^\\circ$ $x=\\dfrac{\\var{v}}{\\sin \\var{anglelist[0]}^\\circ}$ $x=\\dfrac{\\var{v}}{\\tan \\var{anglelist[0]}^\\circ}$ $x=\\var{d}\\sin \\var{anglelist[0]}^\\circ$ $x=\\var{h}\\tan \\var{anglelist[0]}^\\circ$
\n$x=\\dfrac{\\var{h}}{\\sin \\var{anglelist[0]}^\\circ}$ $x=\\var{d}\\sin \\var{anglelist[0]}^\\circ$ $x=\\dfrac{\\var{v}}{\\cos \\var{anglelist[0]}^\\circ}$ $x=\\var{v}\\tan \\var{anglelist[0]}^\\circ$ $x=\\var{d}\\cos \\var{anglelist[0]}^\\circ$ $x=\\dfrac{\\var{h}}{\\tan \\var{anglelist[0]}^\\circ}$
\nA calculator (in degrees mode) evaluates this as $\\var{ans}\\ldots$ which we round to one decimal place as $\\var{precround(ans,1)}$
", "rulesets": {}, "extensions": ["jsxgraph"], "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"deltax": {"name": "deltax", "group": "Ungrouped variables", "definition": "precround(-12+2*triples[1]/triples[0],4)", "description": "", "templateType": "anything", "can_override": false}, "thetaans": {"name": "thetaans", "group": "Ungrouped variables", "definition": "if(vec1=[0,1,2], h/cos(rsang),\nif(vec1=[0,2,1], d*cos(rsang),\nif(vec1=[1,0,2], v/sin(rsang),\nif(vec1=[1,2,0], v/tan(rsang),\nif(vec1=[2,0,1], d*sin(rsang),\nif(vec1=[2,1,0], h*tan(rsang),\n'error'))))))", "description": "answer using theta (lower angle in diagram)
", "templateType": "anything", "can_override": false}, "ans": {"name": "ans", "group": "Ungrouped variables", "definition": "if(anglelist[1]=3, thetaans, phians)", "description": "I think I just calculated the answer two different ways
", "templateType": "anything", "can_override": false}, "display_angles1": {"name": "display_angles1", "group": "Ungrouped variables", "definition": "display_angles[1]", "description": "", "templateType": "anything", "can_override": false}, "rsang": {"name": "rsang", "group": "Ungrouped variables", "definition": "smallest_angle*pi/180", "description": "radians smallest angle
", "templateType": "anything", "can_override": false}, "display_angles": {"name": "display_angles", "group": "Ungrouped variables", "definition": "if(anglelist[1]=3,[smallest_angle,''],['',complement])", "description": "used in jsxgraph
", "templateType": "anything", "can_override": false}, "display_angles0": {"name": "display_angles0", "group": "Ungrouped variables", "definition": "display_angles[0]", "description": "", "templateType": "anything", "can_override": false}, "vec1": {"name": "vec1", "group": "Ungrouped variables", "definition": "shuffle([0,1,2])", "description": "shuffles which edge is shortest
", "templateType": "anything", "can_override": false}, "triples": {"name": "triples", "group": "Ungrouped variables", "definition": "random([[3, 4, 5], [5, 12, 13], [7, 24, 25], [8, 15, 17], [9, 40, 41], [11, 60, 61], [12, 35, 37], [16, 63, 65], [20, 21, 29], [20, 99, 101], [24, 143, 145], [28, 45, 53], [33, 56, 65], [36, 77, 85], [39, 80, 89], [44, 117, 125], [48, 55, 73], [51, 140, 149], [52, 165, 173], [57, 176, 185], [60, 91, 109], [60, 221, 229], [65, 72, 97], [68, 285, 293], [69, 260, 269], [75, 308, 317], [76, 357, 365], [84, 187, 205], [84, 437, 445], [85, 132, 157], [87, 416, 425], [88, 105, 137], [92, 525, 533], [93, 476, 485], [95, 168, 193], [96, 247, 265], [100, 621, 629], [104, 153, 185], [105, 208, 233], [105, 608, 617], [111, 680, 689], [115, 252, 277], [119, 120, 169], [120, 209, 241], [120, 391, 409], [132, 475, 493], [133, 156, 205], [135, 352, 377], [136, 273, 305], [140, 171, 221], [145, 408, 433], [152, 345, 377], [155, 468, 493], [156, 667, 685], [160, 231, 281], [161, 240, 289], [165, 532, 557], [168, 425, 457], [168, 775, 793], [175, 288, 337], [180, 299, 349], [184, 513, 545], [185, 672, 697], [189, 340, 389], [195, 748, 773], [200, 609, 641], [203, 396, 445], [204, 253, 325], [205, 828, 853], [207, 224, 305], [215, 912, 937], [216, 713, 745], [217, 456, 505], [220, 459, 509], [225, 272, 353], [228, 325, 397], [231, 520, 569], [232, 825, 857], [240, 551, 601], [248, 945, 977], [252, 275, 373], [259, 660, 709], [260, 651, 701], [261, 380, 461], [273, 736, 785], [276, 493, 565], [279, 440, 521], [280, 351, 449], [280, 759, 809], [287, 816, 865], [297, 304, 425], [300, 589, 661], [301, 900, 949], [308, 435, 533], [315, 572, 653], [319, 360, 481], [333, 644, 725], [336, 377, 505], [336, 527, 625], [341, 420, 541], [348, 805, 877], [364, 627, 725], [368, 465, 593], [369, 800, 881], [372, 925, 997], [385, 552, 673], [387, 884, 965], [396, 403, 565], [400, 561, 689], [407, 624, 745], [420, 851, 949], [429, 460, 629], [429, 700, 821], [432, 665, 793], [451, 780, 901], [455, 528, 697], [464, 777, 905], [468, 595, 757], [473, 864, 985], [481, 600, 769], [504, 703, 865], [533, 756, 925], [540, 629, 829], [555, 572, 797], [580, 741, 941], [615, 728, 953], [616, 663, 905], [696, 697, 985]])\n", "description": "Some the following were too skinny and so were removed.
use https://www.mathsisfun.com/numbers/pythagorean-triples.html
random([[3,4,5], [5,12,13], [7,24,25], [8,15,17], [9,40,41],
[11,60,61], [12,35,37], [13,84,85], [15,112,113], [16,63,65],
[19,180,181], [20,21,29], [20,99,101],
[23,264,265], [24,143,145], [25,312,313], [27,364,365], [28,45,53],
[28,195,197], [31,480,481], [32,255,257], [33,56,65],
[33,544,545], [35,612,613], [36,77,85], [36,323,325], [37,684,685],
[39,80,89], [40,399,401], [41,840,841], [43,924,925],
[44,117,125], [44,483,485], [48,55,73], [48,575,577], [51,140,149],
[52,165,173], [52,675,677], [56,783,785], [57,176,185], [60,91,109],
[60,221,229], [60,899,901], [65,72,97], [68,285,293], [69,260,269],
[75,308,317], [76,357,365], [84,187,205], [84,437,445], [85,132,157],
[87,416,425], [88,105,137], [92,525,533], [93,476,485], [95,168,193],
[96,247,265], [100,621,629], [104,153,185], [105,208,233], [105,608,617],
[108,725,733], [111,680,689], [115,252,277], [116,837,845], [119,120,169],
[120,209,241], [120,391,409], [123,836,845], [129,920,929],
[132,475,493], [133,156,205], [135,352,377], [136,273,305], [140,171,221],
[145,408,433], [152,345,377], [155,468,493], [156,667,685], [160,231,281],
[161,240,289], [165,532,557], [168,425,457], [168,775,793], [175,288,337],
[180,299,349], [184,513,545], [185,672,697], [189,340,389], [195,748,773],
[200,609,641], [203,396,445], [204,253,325], [205,828,853], [207,224,305],
[215,912,937], [216,713,745], [217,456,505], [220,459,509], [225,272,353],
[228,325,397], [231,520,569], [232,825,857], [240,551,601], [248,945,977],
[252,275,373], [259,660,709], [260,651,701], [261,380,461], [273,736,785],
[276,493,565], [279,440,521], [280,351,449], [280,759,809], [287,816,865],
[297,304,425], [300,589,661], [301,900,949], [308,435,533], [315,572,653],
[319,360,481], [333,644,725], [336,377,505], [336,527,625], [341,420,541],
[348,805,877], [364,627,725], [368,465,593], [369,800,881], [372,925,997],
[385,552,673], [387,884,965], [396,403,565], [400,561,689], [407,624,745],
[420,851,949], [429,460,629], [429,700,821], [432,665,793], [451,780,901],
[455,528,697], [464,777,905], [468,595,757], [473,864,985], [481,600,769],
[504,703,865], [533,756,925], [540,629,829], [555,572,797], [580,741,941],
[615,728,953], [616,663,905], [696,697,985]])
top of triangle for jsxgraph, keeping same ratios.
", "templateType": "anything", "can_override": false}, "d": {"name": "d", "group": "Ungrouped variables", "definition": "if(vec1[2]=1,triples[2],if(vec1[2]=0,'','$x$'))", "description": "diagonal length in triangle
\n\n\nso always integer and scale by k for more randomness.
", "templateType": "anything", "can_override": false}, "anglelist": {"name": "anglelist", "group": "Ungrouped variables", "definition": "random([smallest_angle,3,'$\\\\theta$'],[complement,4,'$\\\\phi$'])", "description": "[precround(180*arctan(triples[0]/triples[1])/pi,0),90-precround(180*arctan(triples[0]/triples[1])/pi,0)]
", "templateType": "anything", "can_override": false}, "smallest_angle": {"name": "smallest_angle", "group": "Ungrouped variables", "definition": "precround(180*arctan(triples[0]/triples[1])/pi,0)", "description": "", "templateType": "anything", "can_override": false}, "phians": {"name": "phians", "group": "Ungrouped variables", "definition": "if(vec1=[0,1,2], h/sin(rcang),\nif(vec1=[0,2,1], d*sin(rcang),\nif(vec1=[1,0,2], v/cos(rcang),\nif(vec1=[1,2,0], v*tan(rcang),\nif(vec1=[2,0,1], d*cos(rcang),\nif(vec1=[2,1,0], h/tan(rcang),\n'error'))))))", "description": "ans using phi (upper angle in diagram)
", "templateType": "anything", "can_override": false}, "scale": {"name": "scale", "group": "Ungrouped variables", "definition": "24/triples[1]", "description": "", "templateType": "anything", "can_override": false}, "rcang": {"name": "rcang", "group": "Ungrouped variables", "definition": "complement*pi/180", "description": "radians complement angle
", "templateType": "anything", "can_override": false}, "switcharoo": {"name": "switcharoo", "group": "Ungrouped variables", "definition": "random(0,1)", "description": "determines which orientation the triangle is displayed as
", "templateType": "anything", "can_override": false}, "h": {"name": "h", "group": "Ungrouped variables", "definition": "if(vec1[1]=1,triples[1],if(vec1[1]=0,'','$x$'))", "description": "horizontal length in triangle
", "templateType": "anything", "can_override": false}, "complement": {"name": "complement", "group": "Ungrouped variables", "definition": "90-smallest_angle", "description": "", "templateType": "anything", "can_override": false}, "v": {"name": "v", "group": "Ungrouped variables", "definition": "if(vec1[0]=1,triples[0],if(vec1[0]=0,'','$x$'))", "description": "vertical length in triangle
", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["triples", "vec1", "v", "h", "d", "scale", "tritop", "deltax", "switcharoo", "smallest_angle", "complement", "anglelist", "display_angles", "display_angles0", "display_angles1", "rsang", "rcang", "ans", "thetaans", "phians"], "variable_groups": [], "functions": {"otherway": {"parameters": [], "type": "html", "language": "javascript", "definition": "var div = Numbas.extensions.jsxgraph.makeBoard('500px','500px',{boundingBox:[-17,17,14,-14],grid:false,axis:false});\nvar board = div.board;\n\n//Doesn't look like you need this\nJXG.Options.text.useMathJax = true;\n\n// get the height of the triangle\nTT = Numbas.jme.unwrapValue(scope.variables.tritop);\ndx = Numbas.jme.unwrapValue(scope.variables.deltax);\nh = Numbas.jme.unwrapValue(scope.variables.h);\nv = Numbas.jme.unwrapValue(scope.variables.v);\nd = Numbas.jme.unwrapValue(scope.variables.d);\ntheta = Numbas.jme.unwrapValue(scope.variables.display_angles0);\nphi = Numbas.jme.unwrapValue(scope.variables.display_angles1);\n\n// create the horizontal line\nvar hor = board.create('line',[[-12,-TT],[12,-TT]], { straightFirst:false, straightLast:false, strokeColor: 'black', fixed: true});\n\n//create the vertical line\nvar vert = board.create('line',[[-12,-TT],[-12,TT/1]], { straightFirst:false, straightLast:false, strokeColor: 'black', fixed: true});\n\n//create the diagonal line\nvar vert = board.create('line',[[12,-TT],[-12,TT/1]], { straightFirst:false, straightLast:false, strokeColor: 'black', fixed: true});\n\n//create the box for right angle\nboard.create('line',[[(-12+0.1*TT),-TT],[(-12+0.1*TT),-TT*0.9]], { straightFirst:false, straightLast:false, strokeColor: 'black', fixed: true});\nboard.create('line',[[(-12+0.1*TT),-TT*0.9],[-12,-TT*0.9]], { straightFirst:false, straightLast:false, strokeColor: 'black', fixed: true});\n\n//label the angle theta\nif (theta == '') {\n} else {\nboard.create('text',[5.5,-4*TT/5,\n function() { \n return theta + \"\\u00B0\";\n }], {fontSize:20,fixed: true});\n}\n\n//label the angle phi\nif (phi == '') {\n} else {\nboard.create('text',[-11.5,3*TT/5,\n function() { \n return phi + \"\\u00B0\";\n }], {fontSize:20,fixed: true});\n}\n\n//display the side lengths\nvar vtext= board.create('text',[-15,0,v], {fontSize:20,fixed: true});\nvar htext= board.create('text',[-2,-TT-1,h], {fontSize:20,fixed: true});\nvar dtext= board.create('text',[-2,TT/2+0.3,d], {fontSize:20,fixed: true});\n\n//can't figure out how to rotate text. http://jsxgraph.uni-bayreuth.de/wiki/index.php/Texts_and_Transformations suggests the following\n//var tRot = board.create('transform', [Math.PI/2, 13,0], {type:'rotate'}); \n//tRot.bindTo(vtext);\n\n\n\n\nreturn div;\n\n"}, "triangle": {"parameters": [], "type": "html", "language": "javascript", "definition": "var div = Numbas.extensions.jsxgraph.makeBoard('500px','500px',{boundingBox:[-13,13,17,-17],grid:false,axis:false});\nvar board = div.board;\n\n//Doesn't look like you need this\nJXG.Options.text.useMathJax = true;\n\n// get the height of the triangle\nTT = Numbas.jme.unwrapValue(scope.variables.tritop);\ndx = Numbas.jme.unwrapValue(scope.variables.deltax);\nh = Numbas.jme.unwrapValue(scope.variables.h);\nv = Numbas.jme.unwrapValue(scope.variables.v);\nd = Numbas.jme.unwrapValue(scope.variables.d);\ntheta = Numbas.jme.unwrapValue(scope.variables.display_angles0);\nphi = Numbas.jme.unwrapValue(scope.variables.display_angles1);\n\n// create the horizontal line\nvar hor = board.create('line',[[-12,-TT],[12,-TT]], { straightFirst:false, straightLast:false, strokeColor: 'black', fixed: true});\n\n//create the vertical line\nvar vert = board.create('line',[[12,-TT],[12,TT/1]], { straightFirst:false, straightLast:false, strokeColor: 'black', fixed: true});\n\n//create the diagonal line\nvar vert = board.create('line',[[-12,-TT],[12,TT/1]], { straightFirst:false, straightLast:false, strokeColor: 'black', fixed: true});\n\n//create the box for right angle\nboard.create('line',[[(12-0.1*TT),-TT],[(12-0.1*TT),-TT*0.9]], { straightFirst:false, straightLast:false, strokeColor: 'black', fixed: true});\nboard.create('line',[[(12-0.1*TT),-TT*0.9],[12,-TT*0.9]], { straightFirst:false, straightLast:false, strokeColor: 'black', fixed: true});\n\n//label the angle theta\nif (theta == '') {\n} else {\nboard.create('text',[-7.2,-4*TT/5,\n function() { \n return theta + \"\\u00B0\";\n }], {fontSize:20,fixed: true});\n}\n\n//label the angle phi\nif (phi == ''){\n} else {\n board.create('text',[9.6,3*TT/5,\n function() { \n return phi + \"\\u00B0\";\n }], {fontSize:20,fixed: true});\n}\n \n//display the side lengths\nvar vtext= board.create('text',[12.5,0,v], {fontSize:20,fixed: true});\nvar htext= board.create('text',[0,-TT-1,h], {fontSize:20,fixed: true});\nvar dtext= board.create('text',[0,TT/2+0.3,d], {fontSize:20,fixed: true});\n\n//can't figure out how to rotate text. http://jsxgraph.uni-bayreuth.de/wiki/index.php/Texts_and_Transformations suggests the following\n//var tRot = board.create('transform', [Math.PI/2, 13,0], {type:'rotate'}); \n//tRot.bindTo(vtext);\n\n\n\n\nreturn div;\n\n"}}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Given the triangle described below, the value of $x$ is [[0]] to 1 decimal place.
\n{if(switcharoo=0,triangle(),otherway())}
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "ans", "maxValue": "ans", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "dp", "precision": "1", "precisionPartialCredit": "50", "precisionMessage": "You have not given your answer to the correct precision.
", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question", "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}]}]}], "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}]}