// Numbas version: finer_feedback_settings {"name": "Interactive eventual probability", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Interactive eventual probability", "tags": [], "metadata": {"description": "", "licence": "None specified"}, "statement": "

What is the eventual extinction $\\xi$ for a branching process starting with one individual and with offspring distribution denoted $p_r$ for $r=0, 1, 2$ where:

\n

$p_0 = \\var{a}$, $p_1 =\\var{b}$ and $p_2 =\\var{c}$ ? (please give exact expression/answer)

", "advice": "

When the expected number of offspring is $\\leq 1$ then $\\xi = 1$.  When this is not the case, we must find the smallest positive root of $s = G(s)$.  In this case $G(s)$ is just a quadratic, and it is not too difficult to show that we obtain $\\xi = \\frac{p_0}{p_2}$.

", "rulesets": {}, "extensions": [], "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "random(1/2, 1/4, 1/6, 1/8)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(1/2, 1/4, 1/3, 0)", "description": "", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "1-a -b", "description": "", "templateType": "anything", "can_override": false}, "d": {"name": "d", "group": "Ungrouped variables", "definition": "if(d2 < d1, \n if(d2 <= 1 & d2 >= 0, rational(d2), rational(d1)),\n if(d1 <= 1 & d1 >= 0, rational(d1), rational(d2)))", "description": "", "templateType": "anything", "can_override": false}, "d1": {"name": "d1", "group": "Ungrouped variables", "definition": "1/((-(b-1) - sqrt((b-1)^2 -(4*a*c)))/(2*a))", "description": "", "templateType": "anything", "can_override": false}, "d2": {"name": "d2", "group": "Ungrouped variables", "definition": "1/((-(b-1) + sqrt((b-1)^2 -(4*a*c)))/(2*a))", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "d <= 1 & d >= 0", "maxRuns": 100}, "ungrouped_variables": ["a", "b", "c", "d", "d1", "d2"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {"mark": {"script": "// Reveal answers, score and advice\nthis.display.revealAnswer();\nthis.display.showScore();\nNumbas.controls.getAdvice();", "order": "after"}}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$\\xi =$ [[0]]

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {"mark": {"script": "this.display.revealAnswer();", "order": "after"}}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{d}", "showPreview": true, "checkingType": "dp", "checkingAccuracy": 3, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question", "contributors": [{"name": "Chris Drovandi", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/9840/"}, {"name": "adam bretherton", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18177/"}]}]}], "contributors": [{"name": "Chris Drovandi", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/9840/"}, {"name": "adam bretherton", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18177/"}]}