// Numbas version: finer_feedback_settings {"name": "2.2.2.1 Graphing from parametric equations", "extensions": ["jsxgraph"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "2.2.2.1 Graphing from parametric equations", "tags": [], "metadata": {"description": "
Given parametric equations, graph the function and obtain an explicit equation. Part of HELM Book 2.2.2.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "Explain what is meant by the term 'parameter'.
", "advice": "If $x=\\sqrt(t)$ then $x^2=t=y$.
\nWhen $t=0, x=0$
\nWhen $t=10, x=\\sqrt{10}$
\nHence $y=x^2,\\quad 0\\leq x\\leq \\sqrt{10}$
\n{diagram}
", "rulesets": {}, "extensions": ["jsxgraph"], "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"diagram": {"name": "diagram", "group": "Ungrouped variables", "definition": "jsxgraph(\n 300,300,\n [graphxmin, graphymax, graphxmax,graphymin],\n [\n \"f\":['functiongraph',[function]]\n ]\n) ", "description": "", "templateType": "anything", "can_override": false}, "function": {"name": "function", "group": "Ungrouped variables", "definition": "expression(\"x^2\")", "description": "", "templateType": "anything", "can_override": false}, "graphxmax": {"name": "graphxmax", "group": "Ungrouped variables", "definition": "4", "description": "", "templateType": "anything", "can_override": false}, "graphxmin": {"name": "graphxmin", "group": "Ungrouped variables", "definition": "-1", "description": "", "templateType": "anything", "can_override": false}, "graphymax": {"name": "graphymax", "group": "Ungrouped variables", "definition": "11", "description": "", "templateType": "anything", "can_override": false}, "graphymin": {"name": "graphymin", "group": "Ungrouped variables", "definition": "-1", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["diagram", "function", "graphxmax", "graphxmin", "graphymax", "graphymin"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Consider the parametric equations $x =\\sqrt{t}$, $y=t$, for $t\\geq 0$.
(a) Draw up a table of values of $t$, $x$ and $y$ for values of $t$ between $0$ and $10$.
(b) Plot a graph of this function.
(c) Obtain an explicit equation for y in terms of x.
$y=$ [[0]].
\nDomain: [[1]] $\\leq x \\leq$ [[2]]
", "gaps": [{"type": "jme", "useCustomName": true, "customName": "y", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "x^2", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}, {"type": "numberentry", "useCustomName": true, "customName": "domain min", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "0", "maxValue": "0", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "jme", "useCustomName": true, "customName": "domain max", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "sqrt(10)", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question", "contributors": [{"name": "Merryn Horrocks", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4052/"}]}]}], "contributors": [{"name": "Merryn Horrocks", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4052/"}]}