// Numbas version: exam_results_page_options {"name": "alternating series 1", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "alternating series 1", "tags": [], "metadata": {"description": "

alternating series 

", "licence": "Creative Commons Attribution-NonCommercial 4.0 International"}, "statement": "

Decide whether the following series is convergent or not

", "advice": "

It may not seem immediate, but we can use alternating series test. It is more visable when we write the first few terms of the series. 

\n

\\[\\displaystyle\\sum_{n=2}^\\infty \\left( \\frac{1}{\\sqrt[\\var{m}]{n}-1} - \\frac{1}{\\sqrt[\\var{m}]{n}+1}\\right) =
\\frac{1}{\\sqrt[\\var{m}]{2}-1} - \\frac{1}{\\sqrt[\\var{m}]{2}+1} + \\frac{1}{\\sqrt[\\var{m}]{3}-1} - \\frac{1}{\\sqrt[\\var{m}]{3}+1}
=\\frac{1}{\\sqrt[\\var{m}]{4}-1} - \\frac{1}{\\sqrt[\\var{m}]{4}+1} + \\ldots\\]

\n

It is clear that this is an alternating series where we are summing the terms of the sequence 

\n

\\[u_n =\\left\\lbrace \\begin{array}{rl}
\\frac{1}{\\sqrt[\\var{m}]{n}-1},  &\\mbox{ if $n$  is even}\\\\ 
-\\frac{1}{\\sqrt[\\var{m}]{n-1}+1}, &\\mbox{ if $n$ is odd}
\\end{array}
\\right .\\]

\n

with $n\\geq 2$. 

\n

\n

We need to check that $|u_{n+1}|\\leq |u_n|$. We have two cases:

\n
    \n
  1. If $n$ is even. Then $n+1$ is odd and we have
    \\[|u_{n}| = \\frac{1}{\\sqrt[\\var{m}]{n}-1} \\mbox{ and } |u_{n+1}| = \\frac{1}{\\sqrt[\\var{m}]{n}+1}.\\] Clearly $\\frac{1}{\\sqrt[\\var{m}]{n}+1} \\leq \\frac{1}{\\sqrt[\\var{m}]{n}-1}$. I.e. $|u_{n+1}| \\leq u_n$.
  2. \n
  3. If $n$ is odd. Then $n+1$ is even and we have \\[|u_{n}| = \\frac{1}{\\sqrt[\\var{m}]{n-1}-1} \\mbox{ and } |u_{n+1}| = \\frac{1}{\\sqrt[\\var{m}]{n+1}+1}.\\] Clearly $\\frac{1}{\\sqrt[\\var{m}]{n+1}+1} \\leq \\frac{1}{\\sqrt[\\var{m}]{n-1}-1}$. I.e. $|u_{n+1}| \\leq u_n$.
  4. \n
\n

Finally, we need to check that $\\displaystyle\\lim_{n\\to\\infty}u_n = 0$. Let $\\varepsilon>0$. Take $N > \\left(\\frac{1}{\\varepsilon} + 1\\right)^{\\var{m}}  $. Then for all $n>N$ we get 

\n
    \n
  1. $\\left| \\frac{1}{\\sqrt[\\var{m}]{n}-1}\\right| < \\frac{1}{\\sqrt[\\var{m}]{N}-1} <\\varepsilon$  if $n$ is even, and 
  2. \n
  3. $\\left| \\frac{1}{\\sqrt[\\var{m}]{n-1}+1}\\right| \\leq \\frac{1}{\\sqrt[\\var{m}]{N}+1} <\\varepsilon$  if $n$ is odd. 
  4. \n
\n

Then by alternating series test,  $\\displaystyle\\sum_{n=2}^\\infty \\left( \\frac{1}{\\sqrt[\\var{m}]{n}-1} - \\frac{1}{\\sqrt[\\var{m}]{n}+1}\\right)$ converges

", "rulesets": {}, "extensions": [], "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"m": {"name": "m", "group": "Ungrouped variables", "definition": "random(list(2..9))", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["m"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$\\displaystyle\\sum_{n=2}^\\infty \\left( \\frac{1}{\\sqrt[\\var{m}]{n}-1} - \\frac{1}{\\sqrt[\\var{m}]{n}+1}\\right)$

", "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["converges", "diverges"], "matrix": ["1", 0], "distractors": ["", ""]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "contributors": [{"name": "Ugur Efem", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18261/"}]}]}], "contributors": [{"name": "Ugur Efem", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18261/"}]}