// Numbas version: finer_feedback_settings {"name": "radius of convergence -various", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "radius of convergence -various", "tags": [], "metadata": {"description": "
questions on radius of convergence
", "licence": "Creative Commons Attribution-NonCommercial 4.0 International"}, "statement": "Find the radius of convergence of the following power series:
", "advice": "Recall that for a given power series
\\[\\displaystyle\\sum_{n=1}^\\infty a_n,\\]
one can use
\\[\\displaystyle\\lim_{n\\to\\infty}\\left| \\frac{a_n}{a_{n+1}}\\right|\\]
to find its radius of convergence.
\n\na) The radius of convergence is
\n\\[\\displaystyle\\lim_{n\\to\\infty}\\left| \\frac{a_n}{a_{n+1}}\\right| = \\lim_{n\\to\\infty}\\left| \\frac{\\frac{(-1)^{n+1}}{n}}{\\frac{(-1)^{n+2}}{n+1}}\\right|
= \\lim_{n\\to\\infty}\\frac{\\frac{1}{n}}{\\frac{1}{n+1}} = 1.\\]
So the power series is convergent when $|x|<1$. Next we need to analyse the behaviour at the end points to determine the convergence.
\nTherefore the interval of convergence is $[-1,1]$ (or $-1\\leq x \\leq 1$).
\n\nb) The radius of convergence is
\n\\[\\displaystyle\\lim_{n\\to\\infty}\\left| \\frac{a_n}{a_{n+1}}\\right| = \\lim_{n\\to\\infty}\\left| \\frac{\\frac{1}{(2n)!}}{\\frac{1}{(2n+2)!}}\\right|
= \\lim_{n\\to\\infty} (2n+2)(2n+1) = \\infty.\\]
So the power series is convergent for all $x\\in\\mathbb R$.
\n\nc) The radius of convergence is
\n\\[\\displaystyle\\lim_{n\\to\\infty}\\left| \\frac{a_n}{a_{n+1}}\\right| = \\lim_{n\\to\\infty}\\left| \\frac{(-1)^{n+1}}{(-1)^{n+2}}\\right|
= 1.\\]
So the power series is convergent when $|x|<1$. Next we need to analyse the behaviour at the end points to determine the convergence.
\nTherefore the interval of convergence is $(-1,1)$ (or $-1< x < 1$).
\n\n\nd) The radius of convergence is
\n\\[\\displaystyle\\lim_{n\\to\\infty}\\left| \\frac{a_n}{a_{n+1}}\\right| = \\lim_{n\\to\\infty}\\left| \\frac{\\frac{n}{5^{n-1}}}{\\frac{(n+1)}{5^{n}}}\\right|
= 5.\\]
So the power series is convergent when $|x+2|<5$; equivalently when $-7 < x < 3$. Next we need to analyse the behaviour at the end points to determine the convergence.
\nTherefore the interval of convergence is $(-7,3)$ (or $-7< x < 3$).
\n\ne) The radius of convergence is
\n\\[\\displaystyle\\lim_{n\\to\\infty}\\left| \\frac{a_n}{a_{n+1}}\\right| = \\lim_{n\\to\\infty}\\left| \\frac{\\frac{2^n}{3^n}}{\\frac{2^{n+1}}{3^{n+1}}}\\right|
= \\frac{3}{2}.\\]
So the power series is convergent when $|x|<\\frac{3}{2}$. Next we need to analyse the behaviour at the end points to determine the convergence.
\nTherefore the interval of convergence is $(-3/2,3/2)$ (or $-3/2< x < 3/2$).
\n\nf) The radius of convergence is
\n\\[\\displaystyle\\lim_{n\\to\\infty}\\left| \\frac{a_n}{a_{n+1}}\\right| = \\lim_{n\\to\\infty}\\left| \\frac{\\frac{(-1)^n}{n^2+1}}{\\frac{(-1)^{n+1}}{(n+1)^2+1}}\\right|
= \\lim_{n\\to\\infty}\\frac{(n+1)^2+1}{n^2+1} = 1.\\]
So the power series is convergent when $|x + 2| < 1$, i.e. $-3< x< -1$. Next we need to analyse the behaviour at the end points to determine the convergence.
\nTherefore the interval of convergence is $[-3,-1]$ (or $-3\\leq x \\leq -1$).
", "rulesets": {}, "extensions": [], "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "The power series $\\displaystyle\\sum_{n=1}^\\infty \\frac{(-1)^{n+1}x^n}{n}$ has radius of convergence [[0]]
\nThe interval of convergence is [[1]]
", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "1", "showPreview": false, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": false, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "-1The power series $\\displaystyle\\sum_{n=1}^\\infty (-1)^{n+1}x^{2n}$ has radius of convergence [[0]]
\nThe interval of convergence is [[1]]
", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "1", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "-1The interval of convergence is [[1]]
", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "5", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "-7The interval of convergence is [[1]]
", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "3/2", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "-1The interval of convergence is [[1]]
", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "1", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": false, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "-3 <= x <= -1", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question", "contributors": [{"name": "Ugur Efem", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18261/"}], "resources": []}]}], "contributors": [{"name": "Ugur Efem", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18261/"}]}