// Numbas version: finer_feedback_settings {"name": "Surds: fraction of square roots resulting in rational", "extensions": [], "custom_part_types": [], "resources": [["question-resources/sqrt_Irff7Ni.png", "/srv/numbas/media/question-resources/sqrt_Irff7Ni.png"], ["question-resources/fracsqrts.png", "/srv/numbas/media/question-resources/fracsqrts.png"]], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {}, "ungrouped_variables": ["listsquares", "listprimes", "listsquare", "fcf", "square1", "square2", "listprime", "arg2", "prime1", "prime2", "extra", "ansmult", "ansarg", "questnum", "questden", "gcff", "num_wo_cf", "den_wo_cf"], "name": "Surds: fraction of square roots resulting in rational", "tags": ["irrationals", "surds"], "preamble": {"css": "", "js": ""}, "advice": "", "rulesets": {}, "parts": [{"stepsPenalty": "1", "prompt": "

The following surd expression \\[\\frac{\\sqrt{\\var{questnum}}}{\\sqrt{\\var{questden}}}\\] simplifies to [[0]].

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"allowFractions": true, "variableReplacements": [], "maxValue": "square1[0]/square2[0]", "minValue": "square1[0]/square2[0]", "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": true, "showCorrectAnswer": false, "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}], "steps": [{"prompt": "

Given $\\displaystyle\\frac{\\sqrt{\\var{questnum}}}{\\sqrt{\\var{questden}}}$ we could simplify each surd separately, and then simplify the fraction if possible:

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
$\\displaystyle\\frac{\\sqrt{\\var{questnum}}}{\\sqrt{\\var{questden}}}$$=$$\\displaystyle\\frac{\\sqrt{\\var{square1[1]}\\times\\var{fcf}}}{\\sqrt{\\var{square2[1]}\\times\\var{fcf}}}$    (find square factors)
$=$$\\displaystyle\\frac{\\var{square1[0]}\\sqrt{\\var{fcf}}}{\\var{square2[0]}\\sqrt{\\var{fcf}}}$    (simplify surds)
$=$$\\displaystyle\\frac{\\var{square1[0]}}{\\var{square2[0]}}$    (simplify fraction)
$=$$\\displaystyle\\simplify{{square1[0]}/{square2[0]}}$
\n

Or, if we can see a common factor we can use \\[\\frac{\\sqrt{a}}{\\sqrt{b}}=\\sqrt{\\frac{a}{b}},\\] and then cancel common factors inside the square root, then convert back to a fraction of square roots and try to simply the remaining surds:

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
$\\displaystyle\\frac{\\sqrt{\\var{questnum}}}{\\sqrt{\\var{questden}}}$$=$$\\displaystyle\\sqrt{\\frac{\\var{questnum}}{\\var{questden}}}$    (use surd identity)
$=$$\\displaystyle\\sqrt{\\frac{\\var{num_wo_cf}\\times\\var{gcff}}{\\var{den_wo_cf}\\times\\var{gcff}}}$    (find greatest common factor)
$=$$\\displaystyle\\sqrt{\\frac{\\var{num_wo_cf}}{\\var{den_wo_cf}}}$    (cancel common factors)
$=$$\\displaystyle\\frac{\\sqrt{\\var{num_wo_cf}}}{\\sqrt{\\var{den_wo_cf}}}$    (use surd identity)
$=$$\\displaystyle\\sqrt{\\var{num_wo_cf}}$
$=$$\\displaystyle\\simplify{{square1[0]}/{square2[0]}}$
\n

Realising $\\displaystyle\\frac{\\sqrt{a}}{\\sqrt{b}}=\\sqrt{\\frac{a}{b}}$ can often be useful.

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "information"}], "scripts": {}, "marks": 0, "showCorrectAnswer": true, "type": "gapfill"}], "statement": "", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "variables": {"questden": {"definition": "fcf*square2[1]", "templateType": "anything", "group": "Ungrouped variables", "name": "questden", "description": ""}, "questnum": {"definition": "fcf*square1[1]", "templateType": "anything", "group": "Ungrouped variables", "name": "questnum", "description": ""}, "extra": {"definition": "random(listprimes)", "templateType": "anything", "group": "Ungrouped variables", "name": "extra", "description": ""}, "ansmult": {"definition": "extra*square1[0]*square2[0]", "templateType": "anything", "group": "Ungrouped variables", "name": "ansmult", "description": ""}, "arg2": {"definition": "square2[1]*prime2", "templateType": "anything", "group": "Ungrouped variables", "name": "arg2", "description": ""}, "listsquare": {"definition": "shuffle(listsquares)[0..2]", "templateType": "anything", "group": "Ungrouped variables", "name": "listsquare", "description": ""}, "listprimes": {"definition": "[2,3,5,7,11]", "templateType": "anything", "group": "Ungrouped variables", "name": "listprimes", "description": ""}, "den_wo_cf": {"definition": "questden/gcff", "templateType": "anything", "group": "Ungrouped variables", "name": "den_wo_cf", "description": ""}, "listprime": {"definition": "shuffle(listprimes)[0..2]", "templateType": "anything", "group": "Ungrouped variables", "name": "listprime", "description": ""}, "ansarg": {"definition": "prime1*prime2", "templateType": "anything", "group": "Ungrouped variables", "name": "ansarg", "description": ""}, "fcf": {"definition": "random(2..12)", "templateType": "anything", "group": "Ungrouped variables", "name": "fcf", "description": "

forced common factor

"}, "prime1": {"definition": "listprime[0]", "templateType": "anything", "group": "Ungrouped variables", "name": "prime1", "description": ""}, "square1": {"definition": "listsquare[0]", "templateType": "anything", "group": "Ungrouped variables", "name": "square1", "description": ""}, "square2": {"definition": "listsquare[1]", "templateType": "anything", "group": "Ungrouped variables", "name": "square2", "description": ""}, "prime2": {"definition": "listprime[1]", "templateType": "anything", "group": "Ungrouped variables", "name": "prime2", "description": ""}, "num_wo_cf": {"definition": "questnum/gcff", "templateType": "anything", "group": "Ungrouped variables", "name": "num_wo_cf", "description": ""}, "gcff": {"definition": "gcd(questnum,questden)", "templateType": "anything", "group": "Ungrouped variables", "name": "gcff", "description": ""}, "listsquares": {"definition": "map([n,n^2],n,1..12)", "templateType": "anything", "group": "Ungrouped variables", "name": "listsquares", "description": ""}}, "metadata": {"notes": "

using background image in table to get a good looking square root symbol

\n

\n

\n\n\n\n\n\n\n\n
[[0]]   $\\,\\,\\,\\,$[[1]]
", "description": "", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}], "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}]}]}], "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}]}