// Numbas version: finer_feedback_settings {"name": "2.6.10 Circle equation no 3", "extensions": ["jsxgraph"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "2.6.10 Circle equation no 3", "tags": [], "metadata": {"description": "

Given that the circle touches the x-axis at a given point and given a point on the circumference, find the equation of the circle.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

State the equation of the unique circle which touches the $x$−axis at the point $(\\var{Cx},0)$ and which passes through the point $(\\var{px}, \\var{py})$.

", "advice": "

Since the circle touches the $x$-axis at $(\\var{a},0)$, this means that this must be the lowest point of the circle. Hence the centre must be on the line $x=\\var{a}$, and the $y-$value at the centre must be equal to the radius.

\n

Hence the circle equation is 

\n

$(\\var{simplify(expression(\"x-\"+a),\"basic\")})^2+(y-r)^2=r^2$

\n

and $(\\var{px},\\var{py})$ satisfies this equation:

\n

$(\\var{simplify(expression(px+\"-\"+a),\"basic\")})^2+(\\var{py}-r)^2=r^2$

\n

Expanding:

\n

$\\var{(px-a)*(px-a)} + \\var{py*py} - \\var{2*py}r + r^2 = r^2$

\n

Rearranging:

\n

$\\var{2*py}r = \\var{(px-a)*(px-a)+py*py}$

\n

$r=\\var[fractionNumbers]{R}$

\n

Hence the equation of the circle is

\n

$(\\var{simplify(expression(\"x-\"+a),\"basic\")})^2+(y-\\var{R})^2=\\var[fractionNumbers]{R*R}$

\n

{correctgraph}

", "rulesets": {}, "extensions": ["jsxgraph"], "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"equation": {"name": "equation", "group": "The Circle", "definition": "expression(\"(x-\"+Cx+\")^2+(y-\"+Cy+\")^2=\"+R*R)", "description": "", "templateType": "anything", "can_override": false}, "Cx": {"name": "Cx", "group": "The Circle", "definition": "a", "description": "

centre x-coordinate

", "templateType": "anything", "can_override": false}, "Cy": {"name": "Cy", "group": "The Circle", "definition": "R", "description": "

centre y-value

", "templateType": "anything", "can_override": false}, "R": {"name": "R", "group": "The Circle", "definition": "(1+py)/2", "description": "

radius

", "templateType": "anything", "can_override": false}, "xminusa": {"name": "xminusa", "group": "The Circle", "definition": "random([-4,-3,-2,-1,1,2,3,4])", "description": "", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "The Circle", "definition": "random(-4..4)", "description": "", "templateType": "anything", "can_override": false}, "px": {"name": "px", "group": "The Circle", "definition": "xminusa + a", "description": "

the x-coordinate of the point

", "templateType": "anything", "can_override": false}, "py": {"name": "py", "group": "The Circle", "definition": "xminusa * xminusa", "description": "

the y-coordinate of the point

", "templateType": "anything", "can_override": false}, "playgraph": {"name": "playgraph", "group": "The graph", "definition": "jessiecode(\n 400,400,[{xmin},{ymax},{xmax},{ymin}],\"Cx={Cx};Cy={Cy};px={px};py={py};ax={a};\"+safe(\n \"\"\"\n Cx=0; Cy=0;\n P1x = 1;\n C=point(Cx,Cy) <>;\n P1=point(P1x,Cy) <>; \n C1=circle(C,P1) <>;\n p2 = point(px,py) <>;\n p3 = point(ax,0) <>;\n \"\"\"),\n [\n \"axis\": true\n ]\n)", "description": "", "templateType": "anything", "can_override": false}, "xmax": {"name": "xmax", "group": "The graph", "definition": "if(xmaxtemp-xmin > ymaxtemp-ymin,xmaxtemp,xmin+ymaxtemp-ymin)", "description": "", "templateType": "anything", "can_override": false}, "xmin": {"name": "xmin", "group": "The graph", "definition": "min(-1,Cx-R-1)", "description": "", "templateType": "anything", "can_override": false}, "ymax": {"name": "ymax", "group": "The graph", "definition": "if(ymaxtemp-ymin > xmaxtemp-xmin,ymaxtemp,ymin+xmaxtemp-xmin)", "description": "", "templateType": "anything", "can_override": false}, "ymin": {"name": "ymin", "group": "The graph", "definition": "min(-1,Cy-R-1)", "description": "", "templateType": "anything", "can_override": false}, "xmaxtemp": {"name": "xmaxtemp", "group": "The graph", "definition": "max(1,Cx+R+1)", "description": "", "templateType": "anything", "can_override": false}, "ymaxtemp": {"name": "ymaxtemp", "group": "The graph", "definition": "max(1,Cy+R+1)", "description": "", "templateType": "anything", "can_override": false}, "correctgraph": {"name": "correctgraph", "group": "The graph", "definition": "jessiecode(\n 400,400,[{xmin},{ymax},{xmax},{ymin}],\"Cx={Cx};Cy={Cy};px={px};py={py};ax={a};\"+safe(\n \"\"\"\n C=point(Cx,Cy) <>;\n P1=point(ax,0) <>; \n P2=point(px,py) <>;\n C1=circle(C,P1) <>;\n \"\"\"),\n [\n \"axis\": true\n ]\n)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": "190"}, "ungrouped_variables": [], "variable_groups": [{"name": "The Circle", "variables": ["xminusa", "a", "px", "py", "R", "Cx", "Cy", "equation"]}, {"name": "The graph", "variables": ["playgraph", "xmin", "ymin", "xmaxtemp", "ymaxtemp", "xmax", "ymax", "correctgraph"]}], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

You can move the black points on this graph to get an idea of where the circle needs to go.

\n

{playgraph}

", "answer": "{equation}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question", "contributors": [{"name": "Merryn Horrocks", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4052/"}]}]}], "contributors": [{"name": "Merryn Horrocks", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4052/"}]}