// Numbas version: finer_feedback_settings {"name": "Andrew's copy of Katie's copy of Matrix Multiplication 1", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {}, "ungrouped_variables": ["ba21", "a21", "a22", "ba22", "cb21", "b22", "b21", "cb22", "ac22", "ac21", "ab22", "ab21", "b12", "b11", "c12", "c11", "c22", "a11", "cb11", "cb12", "a12", "c21", "ba11", "ba12", "ab12", "ab11", "ac12", "ac11"], "name": "Andrew's copy of Katie's copy of Matrix Multiplication 1", "tags": ["matrices", "matrix", "matrix multiplication", "matrix product", "multiplication of matrices", "multiplying matrices", "product of matrices"], "preamble": {"css": "", "js": ""}, "advice": "

a)

\n

\\[ \\begin{eqnarray*} AB &=& \\begin{pmatrix} \\var{a11}&\\var{a12}\\\\ \\var{a21}&\\var{a22}\\\\ \\end{pmatrix}\\begin{pmatrix} \\var{b11}&\\var{b12}\\\\ \\var{b21}&\\var{b22}\\\\ \\end{pmatrix}\\\\ &=& \\begin{pmatrix} \\simplify[]{{a11}{b11}+{a12}{b21}}&\\simplify[]{{a11}{b12}+{a12}{b22}}\\\\ \\simplify[]{{a21}{b11}+{a22}{b21}}&\\simplify[]{{a21}{b12}+{a22}{b22}}\\\\ \\end{pmatrix}\\\\ &=& \\begin{pmatrix} \\var{ab11}&\\var{ab12}\\\\ \\var{ab21}&\\var{ab22}\\\\ \\end{pmatrix} \\end{eqnarray*} \\]

\n

b)

\n

\\[ \\begin{eqnarray*} BA &=& \\begin{pmatrix} \\var{b11}&\\var{b12}\\\\ \\var{b21}&\\var{b22}\\\\ \\end{pmatrix}\\begin{pmatrix} \\var{a11}&\\var{a12}\\\\ \\var{a21}&\\var{a22}\\\\ \\end{pmatrix}\\\\ &=& \\begin{pmatrix} \\simplify[]{{b11}{a11}+{b12}{a21}}&\\simplify[]{{b11}{a12}+{b12}{a22}}\\\\ \\simplify[]{{b21}{a11}+{b22}{a21}}&\\simplify[]{{b21}{a12}+{b22}{a22}}\\\\ \\end{pmatrix}\\\\ &=& \\begin{pmatrix} \\var{ba11}&\\var{ba12}\\\\ \\var{ba21}&\\var{ba22}\\\\ \\end{pmatrix} \\end{eqnarray*} \\]

\n

c)

\n

\\[ \\begin{eqnarray*} CB &=& \\begin{pmatrix} \\var{c11}&\\var{c12}\\\\ \\var{c21}&\\var{c22}\\\\ \\end{pmatrix}\\begin{pmatrix} \\var{b11}&\\var{b12}\\\\ \\var{b21}&\\var{b22}\\\\ \\end{pmatrix}\\\\ &=& \\begin{pmatrix} \\simplify[]{{c11}{b11}+{c12}{b21}}&\\simplify[]{{c11}{b12}+{c12}{b22}}\\\\ \\simplify[]{{c21}{b11}+{c22}{b21}}&\\simplify[]{{c21}{b12}+{a22}{b22}}\\\\ \\end{pmatrix}\\\\ &=& \\begin{pmatrix} \\var{cb11}&\\var{cb12}\\\\ \\var{cb21}&\\var{cb22}\\\\ \\end{pmatrix} \\end{eqnarray*} \\]

\n

d)

\n

\\[ \\begin{eqnarray*} AC &=& \\begin{pmatrix} \\var{a11}&\\var{a12}\\\\ \\var{a21}&\\var{a22}\\\\ \\end{pmatrix}\\begin{pmatrix} \\var{c11}&\\var{c12}\\\\ \\var{c21}&\\var{c22}\\\\ \\end{pmatrix}\\\\ &=& \\begin{pmatrix} \\simplify[]{{a11}{c11}+{a12}{c21}}&\\simplify[]{{a11}{c12}+{a12}{c22}}\\\\ \\simplify[]{{a21}{c11}+{a22}{c21}}&\\simplify[]{{a21}{c12}+{a22}{c22}}\\\\ \\end{pmatrix}\\\\ &=& \\begin{pmatrix} \\var{ac11}&\\var{ac12}\\\\ \\var{ac21}&\\var{ac22}\\\\ \\end{pmatrix} \\end{eqnarray*} \\]

", "rulesets": {"std": ["all", "fractionNumbers", "!collectNumbers"]}, "parts": [{"prompt": "

$AB = \\begin{pmatrix} \\var{a11}&\\var{a12}\\\\ \\var{a21}&\\var{a22}\\\\ \\end{pmatrix}\\begin{pmatrix} \\var{b11}&\\var{b12}\\\\ \\var{b21}&\\var{b22}\\\\ \\end{pmatrix} = $ [[0]]

", "marks": 0, "gaps": [{"numColumns": "2", "type": "matrix", "allowFractions": false, "correctAnswerFractions": false, "markPerCell": false, "numRows": "2", "showCorrectAnswer": true, "correctAnswer": "matrix([\n [ab11,ab12],\n [ab21,ab22]\n])", "scripts": {}, "marks": 1, "tolerance": 0, "allowResize": false}], "showCorrectAnswer": true, "scripts": {}, "type": "gapfill"}, {"prompt": "

$BA = \\begin{pmatrix} \\var{b11}&\\var{b12}\\\\ \\var{b21}&\\var{b22}\\\\ \\end{pmatrix}\\begin{pmatrix} \\var{a11}&\\var{a12}\\\\ \\var{a21}&\\var{a22}\\\\ \\end{pmatrix}=$ [[0]]

", "marks": 0, "gaps": [{"numColumns": "2", "type": "matrix", "allowFractions": false, "correctAnswerFractions": false, "markPerCell": false, "numRows": "2", "showCorrectAnswer": true, "correctAnswer": "matrix([\n [ba11,ba12],\n [ba21,ba22]\n])", "scripts": {}, "marks": 1, "tolerance": 0, "allowResize": false}], "showCorrectAnswer": true, "scripts": {}, "type": "gapfill"}, {"prompt": "

$CB = \\begin{pmatrix} \\var{c11}&\\var{c12}\\\\ \\var{c21}&\\var{c22}\\\\ \\end{pmatrix} \\begin{pmatrix} \\var{b11}&\\var{b12}\\\\ \\var{b21}&\\var{b22}\\\\ \\end{pmatrix}=$ [[0]]

", "marks": 0, "gaps": [{"numColumns": "2", "type": "matrix", "allowFractions": false, "correctAnswerFractions": false, "markPerCell": false, "numRows": "2", "showCorrectAnswer": true, "correctAnswer": "matrix([\n [cb11,cb12],\n [cb21,cb22]\n])", "scripts": {}, "marks": 1, "tolerance": 0, "allowResize": false}], "showCorrectAnswer": true, "scripts": {}, "type": "gapfill"}, {"prompt": "

$AC = \\begin{pmatrix} \\var{a11}&\\var{a12}\\\\ \\var{a21}&\\var{a22}\\\\ \\end{pmatrix}\\begin{pmatrix} \\var{c11}&\\var{c12}\\\\ \\var{c21}&\\var{c22}\\\\ \\end{pmatrix}=$ [[0]]

", "marks": 0, "gaps": [{"numColumns": "2", "type": "matrix", "allowFractions": false, "correctAnswerFractions": false, "markPerCell": false, "numRows": "2", "showCorrectAnswer": true, "correctAnswer": "matrix([\n [ac11,ac12],\n [ac21,ac22]\n])", "scripts": {}, "marks": 1, "tolerance": 0, "allowResize": false}], "showCorrectAnswer": true, "scripts": {}, "type": "gapfill"}], "statement": "\n \n \n

Do the following matrix problems
Let
\\[A=\\begin{pmatrix} \\var{a11}&\\var{a12}\\\\ \\var{a21}&\\var{a22}\\\\ \\end{pmatrix},\\;\\;\n \n B=\\begin{pmatrix} \\var{b11}&\\var{b12}\\\\ \\var{b21}&\\var{b22}\\\\ \\end{pmatrix},\\;\\;\n \n C=\\begin{pmatrix} \\var{c11}&\\var{c12}\\\\ \\var{c21}&\\var{c22}\\\\ \\end{pmatrix}\\]
Calculate the following products of these matrices:

\n \n \n \n ", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "type": "question", "variables": {"ba21": {"definition": "b21*a11+b22*a21", "templateType": "anything", "group": "Ungrouped variables", "name": "ba21", "description": ""}, "a21": {"definition": "random(-2..2)", "templateType": "anything", "group": "Ungrouped variables", "name": "a21", "description": ""}, "a22": {"definition": "random(1..3)", "templateType": "anything", "group": "Ungrouped variables", "name": "a22", "description": ""}, "ba22": {"definition": "b21*a12+b22*a22", "templateType": "anything", "group": "Ungrouped variables", "name": "ba22", "description": ""}, "cb21": {"definition": "c21*b11+c22*b21", "templateType": "anything", "group": "Ungrouped variables", "name": "cb21", "description": ""}, "b22": {"definition": "random(-3..-1)", "templateType": "anything", "group": "Ungrouped variables", "name": "b22", "description": ""}, "b21": {"definition": "random(2,3)", "templateType": "anything", "group": "Ungrouped variables", "name": "b21", "description": ""}, "cb22": {"definition": "c21*b12+c22*b22", "templateType": "anything", "group": "Ungrouped variables", "name": "cb22", "description": ""}, "ac22": {"definition": "a21*c12+a22*c22", "templateType": "anything", "group": "Ungrouped variables", "name": "ac22", "description": ""}, "ac21": {"definition": "a21*c11+a22*c21", "templateType": "anything", "group": "Ungrouped variables", "name": "ac21", "description": ""}, "ab22": {"definition": "a21*b12+a22*b22", "templateType": "anything", "group": "Ungrouped variables", "name": "ab22", "description": ""}, "ab21": {"definition": "a21*b11+a22*b21", "templateType": "anything", "group": "Ungrouped variables", "name": "ab21", "description": ""}, "b12": {"definition": "random(-3..1)", "templateType": "anything", "group": "Ungrouped variables", "name": "b12", "description": ""}, "b11": {"definition": "random(-3,-1,0,3)", "templateType": "anything", "group": "Ungrouped variables", "name": "b11", "description": ""}, "c12": {"definition": "a12+b12", "templateType": "anything", "group": "Ungrouped variables", "name": "c12", "description": ""}, "c11": {"definition": "random(1,0,4)", "templateType": "anything", "group": "Ungrouped variables", "name": "c11", "description": ""}, "ab12": {"definition": "a11*b12+a12*b22", "templateType": "anything", "group": "Ungrouped variables", "name": "ab12", "description": ""}, "a11": {"definition": "random(-2,1,2)", "templateType": "anything", "group": "Ungrouped variables", "name": "a11", "description": ""}, "cb11": {"definition": "c11*b11+c12*b21", "templateType": "anything", "group": "Ungrouped variables", "name": "cb11", "description": ""}, "cb12": {"definition": "c11*b12+c12*b22", "templateType": "anything", "group": "Ungrouped variables", "name": "cb12", "description": ""}, "a12": {"definition": "random(1..4)", "templateType": "anything", "group": "Ungrouped variables", "name": "a12", "description": ""}, "ab11": {"definition": "a11*b11+a12*b21", "templateType": "anything", "group": "Ungrouped variables", "name": "ab11", "description": ""}, "ba11": {"definition": "b11*a11+b12*a21", "templateType": "anything", "group": "Ungrouped variables", "name": "ba11", "description": ""}, "ba12": {"definition": "b11*a12+b12*a22", "templateType": "anything", "group": "Ungrouped variables", "name": "ba12", "description": ""}, "c22": {"definition": "random(0,1)", "templateType": "anything", "group": "Ungrouped variables", "name": "c22", "description": ""}, "c21": {"definition": "random(2..5)", "templateType": "anything", "group": "Ungrouped variables", "name": "c21", "description": ""}, "ac12": {"definition": "a11*c12+a12*c22", "templateType": "anything", "group": "Ungrouped variables", "name": "ac12", "description": ""}, "ac11": {"definition": "a11*c11+a12*c21", "templateType": "anything", "group": "Ungrouped variables", "name": "ac11", "description": ""}}, "metadata": {"notes": "\n \t\t \t\t

10/07/2012:

\n \t\t \t\t

Added tags.

\n \t\t \t\t

Display of matrices looks untidy when individual components include negative numbers.

\n \t\t \t\t

Is it worthwhile restricting all components of matrices to be non zero?

\n \t\t \t\t

Question appears to be working correctly.

\n \t\t \n \t\t", "description": "

Multiplication of $2 \\times 2$ matrices.

", "licence": "Creative Commons Attribution 4.0 International"}, "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}], "contributors": [{"name": "Andrew Iskauskas", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/724/"}]}]}], "contributors": [{"name": "Andrew Iskauskas", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/724/"}]}