// Numbas version: finer_feedback_settings {"name": "Savings compound interest 2 ", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {}, "ungrouped_variables": ["n", "P", "A", "perc", "int", "ratio", "intplus"], "name": "Savings compound interest 2 ", "tags": ["rebel", "Rebel", "REBEL", "rebelmaths"], "advice": "
The compound interest formula is: $\\ A = P(1+i)^n $
\nPart (a)
\nP represents the principal sum invested , so in this example it is €$\\var{P}$.
\nPart (b)
\nA represents the amount in the deposit account after $\\var{n}$ years, so in this example it is €$\\var{A}$.
\nPart (c)
\nn represents the number of compounding periods , so in this example it is $\\var{n}$ years.
\nPart(d)
\nUsing the compound interest formula:
\n$A=P(1+i)^n$
\n$\\var{A}=\\var{P}(1+i)^\\var{n}$
\nWe need to rearrange the equation to find the value of $i$.
\n$\\frac{\\var{A}}{\\var{P}}=(1+i)^\\var{n}$
\n$\\var{ratio}=(1+i)^\\var{n}$
\n$\\sqrt[\\var{n}]{\\var{ratio}}=1+i$
\n$\\var{intplus}=1+i$
\n$i=\\var{int}$ so the annual interest rate is $\\var{perc}$%.
", "rulesets": {}, "parts": [{"prompt": "What is the value of P?
\n€[[0]]
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"allowFractions": false, "variableReplacements": [], "maxValue": "P+0.0001", "minValue": "P-0.0001", "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "What is the value of A?
\n€[[0]]
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"allowFractions": false, "variableReplacements": [], "maxValue": "A+0.0001", "minValue": "A-0.0001", "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "What is the value of n?
\n\n
[[0]]
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"allowFractions": false, "variableReplacements": [], "maxValue": "n+0.0001", "minValue": "n-0.0001", "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "What is the interest rate per annum?
\nPlease give your answer as a percentage correct to 2 decimal places.
\n\n[[0]]%
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"allowFractions": false, "variableReplacements": [], "maxValue": "perc+0.02", "minValue": "perc-0.02", "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "marks": "3", "type": "numberentry", "showPrecisionHint": false}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}], "extensions": [], "statement": "A lump sum of €$\\var{P}$ is deposited into a savings account that pays compound interest for $\\var{n}$ years. If no withdrawals are made from the account, then the amount that the lump sum will have grown to is €$\\var{A}$.
\nThe compound interest formula is:
\n$\\ A = P(1+i)^n $
", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "preamble": {"css": "", "js": ""}, "variables": {"A": {"definition": "precround(P*(1+int)^n,2)", "templateType": "anything", "group": "Ungrouped variables", "name": "A", "description": ""}, "perc": {"definition": "random(1.5..5.5 #0.5)", "templateType": "anything", "group": "Ungrouped variables", "name": "perc", "description": ""}, "ratio": {"definition": "A/P", "templateType": "anything", "group": "Ungrouped variables", "name": "ratio", "description": ""}, "int": {"definition": "perc/100", "templateType": "anything", "group": "Ungrouped variables", "name": "int", "description": ""}, "intplus": {"definition": "ratio^(1/n)", "templateType": "anything", "group": "Ungrouped variables", "name": "intplus", "description": ""}, "n": {"definition": "random(2..6 #1)", "templateType": "anything", "group": "Ungrouped variables", "name": "n", "description": ""}, "P": {"definition": "random(1000..6000 #500)", "templateType": "anything", "group": "Ungrouped variables", "name": "P", "description": ""}}, "metadata": {"description": "Calculate the annual interest rate for a savings account where A, P and n are given.
\nrebelmaths
", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}], "contributors": [{"name": "Julie Crowley", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/113/"}]}]}], "contributors": [{"name": "Julie Crowley", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/113/"}]}