// Numbas version: exam_results_page_options {"name": "Percentages- Percentage Increases and Decreases", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {}, "ungrouped_variables": ["a", "b", "c", "d", "f", "g", "h", "j", "k", "l", "m", "n"], "name": "Percentages- Percentage Increases and Decreases", "tags": [], "advice": "", "rulesets": {}, "parts": [{"stepsPenalty": 0, "prompt": "

Increase $\\var{a}$ by $\\var{b}\\text{%}$.

", "allowFractions": false, "variableReplacements": [], "maxValue": "(1+b/100)*a", "minValue": "(1+b/100)*a", "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": false, "steps": [{"prompt": "

Work out $\\var{b}\\text{%}$ of $\\var{a}$.

", "allowFractions": false, "variableReplacements": [], "maxValue": "(b/100)*a", "minValue": "(b/100)*a", "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}, {"prompt": "

Add your previous answer to $\\var{a}$.

", "allowFractions": false, "variableReplacements": [], "maxValue": "(1+b/100)*a", "minValue": "(1+b/100)*a", "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}], "scripts": {}, "marks": "2", "showCorrectAnswer": true, "type": "numberentry", "showPrecisionHint": false}, {"stepsPenalty": 0, "prompt": "

Increase $\\var{c}$ by $\\var{d}\\text{%}$.

", "allowFractions": false, "variableReplacements": [], "maxValue": "(1+d/100)*c", "minValue": "(1+d/100)*c", "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": false, "steps": [{"prompt": "

Work out $\\var{d}\\text{%}$ of $\\var{c}$.

", "allowFractions": false, "variableReplacements": [], "maxValue": "(d/100)*c", "minValue": "(d/100)*c", "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}, {"prompt": "

Add your previous answer to $\\var{c}$.

", "allowFractions": false, "variableReplacements": [], "maxValue": "(1+d/100)*c", "minValue": "(1+d/100)*c", "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}], "scripts": {}, "marks": "2", "showCorrectAnswer": true, "type": "numberentry", "showPrecisionHint": false}, {"stepsPenalty": 0, "prompt": "

Decrease $\\var{f}$ by $\\var{g}\\text{%}$.

", "allowFractions": false, "variableReplacements": [], "maxValue": "(1-g/100)*f", "minValue": "(1-g/100)*f", "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": false, "steps": [{"prompt": "

Work out $\\var{g}\\text{%}$ of $\\var{f}$

", "allowFractions": false, "variableReplacements": [], "maxValue": "(g/100)*f", "minValue": "(g/100)*f", "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}, {"prompt": "

Subtract your previous answer from $\\var{f}$.

", "allowFractions": false, "variableReplacements": [], "maxValue": "(1-g/100)*f", "minValue": "(1-g/100)*f", "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}], "scripts": {}, "marks": "2", "showCorrectAnswer": true, "type": "numberentry", "showPrecisionHint": false}, {"stepsPenalty": 0, "prompt": "

Decrease $\\var{h}$ by $\\var{j}\\text{%}$.

", "allowFractions": false, "variableReplacements": [], "maxValue": "(1-j/100)*h", "minValue": "(1-j/100)*h", "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": false, "steps": [{"prompt": "

Work out $\\var{j}\\text{%}$ of $\\var{h}$

", "allowFractions": false, "variableReplacements": [], "maxValue": "(j/100)*h", "minValue": "(j/100)*h", "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}, {"prompt": "

Subtract your previous answer from $\\var{h}$.

", "allowFractions": false, "variableReplacements": [], "maxValue": "(1-j/100)*h", "minValue": "(1-j/100)*h", "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}], "scripts": {}, "marks": "2", "showCorrectAnswer": true, "type": "numberentry", "showPrecisionHint": false}, {"stepsPenalty": 0, "prompt": "

Increase $\\var{k}$ by $\\var{l}\\text{%}$.

", "allowFractions": false, "variableReplacements": [], "maxValue": "(1+l/100)*k", "minValue": "(1+l/100)*k", "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": false, "steps": [{"prompt": "

Work out $\\var{l}\\text{%}$ of $\\var{k}$

", "allowFractions": false, "variableReplacements": [], "maxValue": "(l/100)*k", "minValue": "(l/100)*k", "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}, {"prompt": "

Add your previous answer to $\\var{k}$.

", "allowFractions": false, "variableReplacements": [], "maxValue": "(1-l/100)*k", "minValue": "(1-l/100)*k", "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}], "scripts": {}, "marks": "2", "showCorrectAnswer": true, "type": "numberentry", "showPrecisionHint": false}, {"stepsPenalty": 0, "prompt": "

Decrease $\\var{m}$ by $\\var{n}\\text{%}$.

", "allowFractions": false, "variableReplacements": [], "maxValue": "(1-n/100)*m", "minValue": "(1-n/100)*m", "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": false, "steps": [{"prompt": "

Work out $\\var{n}\\text{%}$ of $\\var{m}$

", "allowFractions": false, "variableReplacements": [], "maxValue": "(n/100)*m", "minValue": "(n/100)*m", "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}, {"prompt": "

Subtract your previous answer from $\\var{m}$.

", "allowFractions": false, "variableReplacements": [], "maxValue": "(1-n/100)*m", "minValue": "(1-n/100)*m", "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}], "scripts": {}, "marks": "2", "showCorrectAnswer": true, "type": "numberentry", "showPrecisionHint": false}], "statement": "

Here you need to work out percentage increases and decreases using non-calculator methods.

\n

If you get stuck you can select \"Show Steps\" which will take you through how to answer the question.

", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "preamble": {"css": "", "js": ""}, "variables": {"a": {"definition": "random(100..1000#20) //random number between 100 and 1000 that is divisible by 20", "templateType": "anything", "group": "Ungrouped variables", "name": "a", "description": ""}, "c": {"definition": "random(100..1000#20) //random number between 100 and 1000 that is divisible by 20", "templateType": "anything", "group": "Ungrouped variables", "name": "c", "description": ""}, "b": {"definition": "random(0..100#5) //A random percentage between 0 and 100 that is divisble by 5", "templateType": "anything", "group": "Ungrouped variables", "name": "b", "description": ""}, "d": {"definition": "random(0..100#5) //A random percentage between 0 and 100 that is divisble by 5", "templateType": "anything", "group": "Ungrouped variables", "name": "d", "description": ""}, "g": {"definition": "random(0..100#5) //A random percentage between 0 and 100 that is divisble by 5", "templateType": "anything", "group": "Ungrouped variables", "name": "g", "description": ""}, "f": {"definition": "random(100..1000#20) //random number between 100 and 1000 that is divisible by 20", "templateType": "anything", "group": "Ungrouped variables", "name": "f", "description": ""}, "h": {"definition": "random(100..1000#20) //random number between 100 and 1000 that is divisible by 20", "templateType": "anything", "group": "Ungrouped variables", "name": "h", "description": ""}, "k": {"definition": "random(100..1000#10) // random number between 100 and 1000 that is divisble by 10", "templateType": "anything", "group": "Ungrouped variables", "name": "k", "description": ""}, "j": {"definition": "random(0..100#5) //A random percentage between 0 and 100 that is divisble by 5", "templateType": "anything", "group": "Ungrouped variables", "name": "j", "description": ""}, "m": {"definition": "random(100..1000#10) // random number between 100 and 1000 that is divisble by 10", "templateType": "anything", "group": "Ungrouped variables", "name": "m", "description": ""}, "l": {"definition": "random(0..100) //random number between 1 and 100", "templateType": "anything", "group": "Ungrouped variables", "name": "l", "description": ""}, "n": {"definition": "random(0..100) //random number between 1 and 100", "templateType": "anything", "group": "Ungrouped variables", "name": "n", "description": ""}}, "metadata": {"notes": "", "description": "

Non-calculator percentage increase and decrease calculations.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}], "contributors": [{"name": "Bonny Barkus", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/775/"}]}]}], "contributors": [{"name": "Bonny Barkus", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/775/"}]}