// Numbas version: exam_results_page_options {"name": "Graphing: linear", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {}, "ungrouped_variables": ["a", "b", "lleading", "rleading", "xints"], "name": "Graphing: linear", "tags": ["graphing", "linear", "polynomials", "sketching", "straight lines"], "preamble": {"css": "", "js": ""}, "advice": "", "rulesets": {}, "parts": [{"stepsPenalty": "1", "displayColumns": 0, "prompt": "

This equation, or its graph, can be described as a

", "matrix": ["1", "0", "0", 0, 0, 0], "shuffleChoices": true, "maxMarks": 0, "variableReplacements": [], "choices": ["

straight line

", "

parabola/quadratic

", "

cubic

", "

hyperbola

", "

circle

", "

quartic

"], "variableReplacementStrategy": "originalfirst", "steps": [{"prompt": "

An equation of the form $y=ax+b$ is known as a linear equation, and its graph is a straight line. 

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "information"}], "distractors": ["", "", "", "", "", ""], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "1_n_2", "displayType": "radiogroup", "minMarks": 0}, {"stepsPenalty": "1", "displayColumns": 0, "prompt": "

As we move to the far left of the graph, the graph

", "matrix": "lleading", "shuffleChoices": false, "maxMarks": 0, "variableReplacements": [], "choices": ["

goes upwards.

", "

goes downwards.

"], "variableReplacementStrategy": "originalfirst", "steps": [{"prompt": "

What happens to the graph as you go far to the left or right is called the long term behaviour of a graph.

\n

The leading term (the term that includes the highest power) determines the long term behaviour of a polynomial. In our polynomial the leading term is $\\simplify[all,fractionNumbers]{{a}x}$.

\n

As we go far to the left of the graph $x$ is negative, and so $\\simplify[all,fractionNumbers]{{a}x}$ is negative. That is, the graph goes downwards. is positive. That is, the graph goes upwards. 

\n

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "information"}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "1_n_2", "displayType": "radiogroup", "minMarks": 0}, {"stepsPenalty": "1", "displayColumns": 0, "prompt": "

As we move to the far right of the graph, the graph

", "matrix": "rleading", "shuffleChoices": false, "maxMarks": 0, "variableReplacements": [], "choices": ["

goes upwards.

", "

goes downwards.

"], "variableReplacementStrategy": "originalfirst", "steps": [{"prompt": "

What happens to the graph as you go far to the left or right is called the long term behaviour of a graph.

\n

The leading term (the term that includes the highest power) determines the long term behaviour of a polynomial. In our polynomial the leading term is $\\simplify[all,fractionNumbers]{{a}x}$.

\n

As we go far to the right of the graph $x$ is positive, and so $\\simplify[all,fractionNumbers]{{a}x}$ is negative. That is, the graph goes downwards. is positive. That is, the graph goes upwards. 

\n

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "information"}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "1_n_2", "displayType": "radiogroup", "minMarks": 0}, {"stepsPenalty": "1", "prompt": "

The $y$-intercept of the graph is $y=$[[0]].

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "steps": [{"prompt": "

The $y$-intercept is the value of $y$ when $x=0$, that is, the value of $y$ where the graph hits the $y$-axis. To find it, substitute $x=0$ into our equation:

\n

\\[y=\\simplify[unitFactor,basic,fractionNumbers]{{a}0+{b}}=\\var{b}.\\]

\n

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "information"}], "gaps": [{"allowFractions": true, "variableReplacements": [], "maxValue": "{b}", "minValue": "{b}", "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": true, "showCorrectAnswer": true, "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"stepsPenalty": "1", "prompt": "

The set of $x$-intercepts of the graph would be [[0]].

\n

Note: If there are no intercepts, enter set()

\n

If there is only one intercept, say $x=5$, enter set(5)

\n

If there are two intercepts, say $x=-2$ and $x=1.5$, enter set(-2,1.5)

\n

If there are three intercepts, say $x=-2$, $x=1.5$ and $x=5$, enter set(-2,1.5,5)

\n

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "steps": [{"prompt": "

The $x$-intercept is the value of $x$ when $y=0$, that is, the value of $x$ where the graph hits the $x$-axis. To find it, substitute $y=0$ into our equation:

\n

\\[0=\\simplify[all,fractionNumbers]{{a}x+{b}} \\]

\n

\n

Solving this equation tells us that the $x$-intercept is $x=\\simplify[all, fractionNumbers]{{-b}/{a}}$.

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "information"}], "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "answer": "{xints}", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"stepsPenalty": "1", "prompt": "

Given the degree of a polynomial is $1$, the maximum number of possible 'bends' or 'turns' in the graph is [[0]].

\n

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "steps": [{"prompt": "

A degree $n$ polynomial has at most $n-1$ bends in its graph.

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "information"}], "gaps": [{"allowFractions": false, "variableReplacements": [], "maxValue": "0", "minValue": "0", "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}], "extensions": [], "statement": "

You are given the equation $y=\\simplify[all,fractionNumbers]{{a}x+{b}}$. 

", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "variables": {"a": {"definition": "random(-6..6 except 0)", "templateType": "anything", "group": "Ungrouped variables", "name": "a", "description": ""}, "lleading": {"definition": "[if(a<0,1,0),if(a<0,0,1)]", "templateType": "anything", "group": "Ungrouped variables", "name": "lleading", "description": ""}, "b": {"definition": "random(-10..10)", "templateType": "anything", "group": "Ungrouped variables", "name": "b", "description": ""}, "rleading": {"definition": "[if(a>0,1,0),if(a>0,0,1)]", "templateType": "anything", "group": "Ungrouped variables", "name": "rleading", "description": ""}, "xints": {"definition": "set(-b/a)", "templateType": "anything", "group": "Ungrouped variables", "name": "xints", "description": ""}}, "metadata": {"description": "", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}], "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}]}]}], "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}]}