// Numbas version: finer_feedback_settings {"name": "Graphing: semi-circles centred at the origin", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Graphing: semi-circles centred at the origin", "tags": ["circles", "graphing", "Graphing", "semi-circles"], "metadata": {"description": "

Recognising the equation of a semi-circle centred at the origin. Top, bottom, left and right.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Being able to identify the equation of a semi-circle can come in handy, not just as an exercise in graphing, relations or functions, but also for more advanced things like integration using trigonometric substitution. 

", "advice": "", "rulesets": {}, "extensions": [], "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"r": {"name": "r", "group": "Ungrouped variables", "definition": "shuffle(1..12)[0..5]", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["r"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "m_n_x", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Match the equations with the descriptions by clicking on the corresponding buttons.

", "stepsPenalty": "5", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

The equation of a circle centred at the origin of radius $r$ is normally written as \\[x^2+y^2=r^2.\\] 

\n

Rearrange this to make $y$ the subject:

\n

\\begin{align}x^2+y^2&=r^2\\\\y^2&=r^2-x^2\\\\y&=\\pm\\sqrt{r^2-x^2}\\end{align}

\n

This is the equation for the same circle, it is just written differently. Notice we needed to take the plus or minus square-root to undo the square. As you would expect, the plus sign allows $y$ to have positive values and the minus sign allows $y$ to have positive values. This means the equation \\[y=\\sqrt{r^2-x^2}\\] is the top half of the circle centred at the origin with radius $r$, and \\[y=-\\sqrt{r^2-x^2}\\] is the bottom half of the circle.

\n

Let us return to the equation of the circle $x^2+y^2=r^2$ and rearrange it to make $x$ the subject:

\n

\\begin{align}x^2+y^2&=r^2\\\\x^2&=r^2-y^2\\\\x&=\\pm\\sqrt{r^2-y^2}\\end{align}

\n

Again, this is the equation for the same circle, it is just written differently. Notice the plus or minus sign giving both positive and negative $x$ values. If we only want the right-hand side of the circle we restrict ourselves to the positive $x$ values and so the equation of that semi-circle would be \\[x=\\sqrt{r^2-y^2}.\\]

\n

However, if we only want the left-hand side of the circle we restrict ourselves to the negative $x$ values, and our equation would be \\[x=-\\sqrt{r^2-y^2}.\\]

"}], "minMarks": 0, "maxMarks": 0, "minAnswers": 0, "maxAnswers": 0, "shuffleChoices": true, "shuffleAnswers": true, "displayType": "radiogroup", "warningType": "none", "showCellAnswerState": true, "markingMethod": "sum ticked cells", "choices": ["

The left half of a circle

", "

The right half of a circle

", "

The top half of a circle

", "

The bottom half of a circle

", "

An entire circle

"], "matrix": [["1", 0, 0, 0, 0], [0, "1", 0, 0, 0], [0, 0, "1", 0, 0], [0, 0, 0, "1", 0], [0, 0, 0, 0, "1"]], "layout": {"type": "all", "expression": ""}, "answers": ["

$x=-\\sqrt{\\var{r[0]}^2-y^2}$

", "

$x=\\sqrt{\\var{r[1]}^2-y^2}$

", "

$y=\\sqrt{\\var{r[2]}^2-x^2}$

", "

$y=-\\sqrt{\\var{r[3]}^2-x^2}$

", "

$y=\\pm\\sqrt{\\var{r[4]}^2-x^2}$

"]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}], "resources": []}]}], "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}]}