// Numbas version: finer_feedback_settings {"name": "Graphing: semi-circles centred at the origin", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Graphing: semi-circles centred at the origin", "tags": ["circles", "graphing", "Graphing", "semi-circles"], "metadata": {"description": "
Recognising the equation of a semi-circle centred at the origin. Top, bottom, left and right.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "Being able to identify the equation of a semi-circle can come in handy, not just as an exercise in graphing, relations or functions, but also for more advanced things like integration using trigonometric substitution.
", "advice": "", "rulesets": {}, "extensions": [], "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"r": {"name": "r", "group": "Ungrouped variables", "definition": "shuffle(1..12)[0..5]", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["r"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "m_n_x", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Match the equations with the descriptions by clicking on the corresponding buttons.
", "stepsPenalty": "5", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "The equation of a circle centred at the origin of radius $r$ is normally written as \\[x^2+y^2=r^2.\\]
\nRearrange this to make $y$ the subject:
\n\\begin{align}x^2+y^2&=r^2\\\\y^2&=r^2-x^2\\\\y&=\\pm\\sqrt{r^2-x^2}\\end{align}
\nThis is the equation for the same circle, it is just written differently. Notice we needed to take the plus or minus
Let us return to the equation of the circle $x^2+y^2=r^2$ and rearrange it to make $x$ the subject:
\n\\begin{align}x^2+y^2&=r^2\\\\x^2&=r^2-y^2\\\\x&=\\pm\\sqrt{r^2-y^2}\\end{align}
\nAgain, this is the equation for the same circle, it is just written differently. Notice the plus or minus sign giving both positive and negative $x$ values. If we only want the
However, if we only want the
The left half of a circle
", "The right half of a circle
", "The top half of a circle
", "The bottom half of a circle
", "An entire circle
"], "matrix": [["1", 0, 0, 0, 0], [0, "1", 0, 0, 0], [0, 0, "1", 0, 0], [0, 0, 0, "1", 0], [0, 0, 0, 0, "1"]], "layout": {"type": "all", "expression": ""}, "answers": ["$x=-\\sqrt{\\var{r[0]}^2-y^2}$
", "$x=\\sqrt{\\var{r[1]}^2-y^2}$
", "$y=\\sqrt{\\var{r[2]}^2-x^2}$
", "$y=-\\sqrt{\\var{r[3]}^2-x^2}$
", "$y=\\pm\\sqrt{\\var{r[4]}^2-x^2}$
"]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}], "resources": []}]}], "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}]}