// Numbas version: finer_feedback_settings {"name": "Robert's copy of Functions of two variables: Stationary points 2", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {}, "ungrouped_variables": ["a", "c", "ch", "d", "m", "s5", "a1", "other", "b1", "c2", "c1", "b", "check", "d1"], "name": "Robert's copy of Functions of two variables: Stationary points 2", "tags": ["Calculus", "Differentiation", "calculus", "derivative", "differentiation", "functions of two variables", "partial derivative", "partial differentiation", "stationary points", "stationary points of functions of two variables"], "preamble": {"css": "", "js": ""}, "advice": "

a)

\n

\\[\\begin{eqnarray*} {\\partial f \\over \\partial x} &=&\\simplify[std]{(({a} * (x ^ 2)) + ({b} * x * y) + ({c} * (y ^ 2)))}\\\\ \\\\ \\partial f \\over \\partial y &=&\\simplify[std]{((({b} / 2) * (x ^ 2)) + ({(2 * c)} * x * y) + {d})} \\end{eqnarray*}\\]

\n

b)

\n

$(a,b)$ is a stationary point for the function $f(x,y)$ if $f_x=0,\\;\\;f_y=0$,where the partial derivatives are evaluated at $x=a,\\;\\;y=b$.
So you have to make sure that both these partial derivatives are $0$ at the stationary point.

\n

For this example we have from the above equations that:
\\[\\begin{eqnarray*} \\simplify[std]{(({a} * (x ^ 2)) + ({b} * x * y) + ({c} * (y ^ 2)))}&=&0,\\qquad &\\mathbf{(1)}&\\\\ \\\\ \\simplify[std]{((({b} / 2) * (x ^ 2)) + ({(2 * c)} * x * y) + {d})}&=&0, \\qquad &\\mathbf{(2)}& \\end{eqnarray*}\\]

\n

The left hand side of equation (1) can be factorised as:

\n

\\[\\simplify[std]{({a1}x+{b1}y)*({c1}x+{d1}y)=0}\\]

\n

and so we have:
\\[y=\\simplify[std]{{-a1}/{b1}*x},\\mbox{ or } y= \\simplify[std]{{-c1}/{d1}*x}\\]

\n
First case: $y= \\simplify[std]{{-a1}/{b1}*x}$
\n

Substituting this into equation (2) gives:
\\[\\simplify[std]{{b}/2*x^2-{2c*a1}/{b1}*x^2+{d}}=0 \\Rightarrow \\simplify[std]{{-b*b1+4*c*a1}/{2*b1}*x^2={d}}\\]

\n

Hence $x=\\var{m}\\mbox{ or } x = \\var{-m}$ and the stationary points which are on the list and which you had to choose are:
\\[\\left(\\var{m},\\simplify[std]{-{a1*m}/{b1}}\\right)\\mbox{ and }\\left(\\var{-m},\\simplify[std]{{a1*m}/{b1}}\\right)\\]

\n
Second case: $y= \\simplify[std]{{-c1}/{d1}*x}$
\n

{check}

\n

Substituting this into equation (2) gives:
\\[\\simplify[std]{{b}/2*x^2-{2c*c1}/{d1}*x^2+{d}}=0 \\Rightarrow \\simplify[std]{{-b*d1+4*c*c1}/{2*d1}*x^2={d}}\\]

\n

{other}

", "rulesets": {"std": ["all", "fractionNumbers", "!collectNumbers", "!noLeadingMinus"]}, "parts": [{"prompt": "

Enter the partial derivatives here. Note if you want to enter a product of unknowns, such as $xy$ then you input the expression in the form x*y.

\n

$\\displaystyle { \\partial f \\over \\partial x}=$ [[0]]

\n

$\\displaystyle {\\partial f \\over \\partial y}=$ [[1]]

", "marks": 0, "gaps": [{"expectedvariablenames": ["x", "y"], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "vsetrangepoints": 5, "showCorrectAnswer": true, "answersimplification": "std", "scripts": {}, "answer": "(({a} * (x ^ 2)) + ({b} * x * y) + ({c} * (y ^ 2)))", "marks": 2, "checkvariablenames": true, "checkingtype": "absdiff", "type": "jme"}, {"expectedvariablenames": ["x", "y"], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "vsetrangepoints": 5, "showCorrectAnswer": true, "answersimplification": "std", "scripts": {}, "answer": "((({b} / 2) * (x ^ 2)) + ({(2 * c)} * x * y) + {d})", "marks": 2, "checkvariablenames": true, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "type": "gapfill"}, {"maxAnswers": 0, "displayColumns": 3, "prompt": "\n

Finding Stationary Points.

\n

Tick the two choices which give stationary points for $f(x,y)$.

\n

Note that the easiest way to do this question is to substitute the values for $x$ and for $y$ into the expressions for $\\displaystyle {\\partial f \\over \\partial x}$ and $\\displaystyle{\\partial f \\over \\partial y}$ and see if you get $0$ for both.

\n ", "matrix": [2, 2, 0, 0, 0, 0], "shuffleChoices": true, "minAnswers": 0, "choices": ["

$x=\\var{m},\\;\\;y=\\simplify[std]{-{a1*m}/{b1}}$

", "

$x=\\var{-m},\\;\\;y=\\simplify[std]{{a1*m}/{b1}}$

", "

$x=\\var{m+1},\\;\\;y=\\simplify[std]{-{c1*(m+1)}/{d1}}$

", "

$x=\\var{-m-1},\\;\\;y=\\simplify[std]{{c1*(m+1)}/{d1}}$

", "

$x=\\var{m-1},\\;\\;y=\\simplify[std]{-{a1+2*b1}/{b1}}$

", "

$x=\\var{-m+1},\\;\\;y=\\simplify[std]{{a1+2*b1}/{b1}}$

"], "warningType": "none", "displayType": "checkbox", "maxMarks": 0, "scripts": {}, "distractors": ["", "", "", "", "", ""], "marks": 0, "showCorrectAnswer": true, "type": "m_n_2", "minMarks": 0}], "statement": "\n

Answer the following questions about the function:

\n

\\[f(x,y)=\\simplify[std]{ ({a} / 3) * x ^ 3 + ({b} / 2) * x ^ 2 * y + {c} * y ^ 2 * x + {d} * y}\\]

\n ", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "type": "question", "variables": {"a": {"definition": "a1*c1", "templateType": "anything", "group": "Ungrouped variables", "name": "a", "description": ""}, "c": {"definition": "b1*d1", "templateType": "anything", "group": "Ungrouped variables", "name": "c", "description": ""}, "ch": {"definition": "if(a1*d1=b1*c1,0,1)", "templateType": "anything", "group": "Ungrouped variables", "name": "ch", "description": ""}, "d": {"definition": "-(b1*c1-3*a1*d1)/2*m^2", "templateType": "anything", "group": "Ungrouped variables", "name": "d", "description": ""}, "m": {"definition": "random(1..4)", "templateType": "anything", "group": "Ungrouped variables", "name": "m", "description": ""}, "s5": {"definition": "if(d*(-b*d1+4*c*c1)<=0,-1,1)", "templateType": "anything", "group": "Ungrouped variables", "name": "s5", "description": ""}, "a1": {"definition": "random(1..5)", "templateType": "anything", "group": "Ungrouped variables", "name": "a1", "description": ""}, "other": {"definition": "if(s5=-1,'There can be no more stationary points as we cannot solve this.', if(ch=0,' we get the same stationary points',' You solve this getting 2 values of $x$ and then you obtain two more stationary points (which are not on the list you choose from).'))", "templateType": "anything", "group": "Ungrouped variables", "name": "other", "description": ""}, "b1": {"definition": "random(2,4,6)", "templateType": "anything", "group": "Ungrouped variables", "name": "b1", "description": ""}, "c2": {"definition": "random(1..4)", "templateType": "anything", "group": "Ungrouped variables", "name": "c2", "description": ""}, "c1": {"definition": "if(b1*c2=3*a1*d1,c2+1,c2)", "templateType": "anything", "group": "Ungrouped variables", "name": "c1", "description": ""}, "b": {"definition": "b1*c1+a1*d1", "templateType": "anything", "group": "Ungrouped variables", "name": "b", "description": ""}, "check": {"definition": "if(ch=0, 'The two expressions for y in terms of x are the same and we will get exactly the same so ignore the rest!',' ')", "templateType": "anything", "group": "Ungrouped variables", "name": "check", "description": ""}, "d1": {"definition": "random(2,4,6)", "templateType": "anything", "group": "Ungrouped variables", "name": "d1", "description": ""}}, "metadata": {"notes": "\n \t\t

10/07/2012:

\n \t\t

Added tags.

\n \t\t

Question appears to be working correctly.

\n \t\t

 

\n \t\t", "description": "

Find the stationary points of the function: $f(x,y)=a x ^ 3 + b x ^ 2 y + c y ^ 2 x + dy$ by choosing from a list of points.

", "licence": "Creative Commons Attribution 4.0 International"}, "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}], "contributors": [{"name": "Robert Anderson", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/809/"}]}]}], "contributors": [{"name": "Robert Anderson", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/809/"}]}