// Numbas version: finer_feedback_settings {"name": " Exact values for csc, sec, cot (acute, radians)", "extensions": [], "custom_part_types": [], "resources": [["question-resources/exact_values_radians.svg", "exact_values_radians_Y0PzSJK.svg"]], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": " Exact values for csc, sec, cot (acute, radians)", "tags": [], "metadata": {"description": "
multiple choice testing csc, sec, cot of random(pi/6, pi/4, pi/3) radians
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "Often we prefer to work with exact values rather than approximations from a calculator.
", "advice": "Recall that $\\csc\\theta=\\dfrac{1}{\\sin\\theta}$, $\\sec\\theta=\\dfrac{1}{\\cos\\theta}$, and $\\cot\\theta=\\dfrac{1}{\\tan\\theta}$.
\n\nBy drawing the following triangles we can determine the exact values of $\\sin$, $\\cos$ and $\\tan$ (and their reciprocals $\\csc$, $\\sec$, $\\cot$) for the angles $\\dfrac{\\pi}{6}$, $\\dfrac{\\pi}{4}$ and $\\dfrac{\\pi}{3}$.
$\\csc\\left(\\var{distheta}\\right)=\\dfrac{\\text{Hypotenuse}}{\\text{Opposite}}=\\;\\;2$$\\csc\\left(\\var{distheta}\\right)=\\dfrac{\\text{Hypotenuse}}{\\text{Opposite}}=\\sqrt{2}$$\\csc\\left(\\var{distheta}\\right)=\\dfrac{\\text{Hypotenuse}}{\\text{Opposite}}=\\dfrac{2}{\\sqrt{3}}$
\n$\\sec\\left(\\var{distheta}\\right)=\\dfrac{\\text{Hypotenuse}}{\\text{Adjacent}}=\\dfrac{2}{\\sqrt{3}}$$\\sec\\left(\\var{distheta}\\right)=\\dfrac{\\text{Hypotenuse}}{\\text{Adjacent}}=\\sqrt{2}$$\\sec\\left(\\var{distheta}\\right)=\\dfrac{\\text{Hypotenuse}}{\\text{Adjacent}}=\\;\\;2$
\n$\\cot\\left(\\var{distheta}\\right)=\\;\\;\\dfrac{\\text{Adjacent}}{\\text{Opposite}}\\;\\;=\\sqrt{3}$$\\cot\\left(\\var{distheta}\\right)=\\;\\;\\dfrac{\\text{Adjacent}}{\\text{Opposite}}\\;\\;=\\;\\;1$$\\cot\\left(\\var{distheta}\\right)=\\;\\;\\dfrac{\\text{Adjacent}}{\\text{Opposite}}\\;\\;=\\dfrac{1}{\\sqrt{3}}$
\nAlternatively, one can memorise the following table:
\n| \n | $\\dfrac{\\pi}{6}$ | \n$\\dfrac{\\pi}{4}$ | \n$\\dfrac{\\pi}{3}$ | \n
| \n | \n | \n | \n |
| $\\sin$ | \n$\\dfrac{1}{2}$ | \n$\\dfrac{1}{\\sqrt{2}}$ | \n$\\dfrac{\\sqrt{3}}{2}$ | \n
| \n | \n | \n | \n |
| $\\cos$ | \n$\\dfrac{\\sqrt{3}}{2}$ | \n$\\dfrac{1}{\\sqrt{2}}$ | \n$\\dfrac{1}{2}$ | \n
| \n | \n | \n | \n |
| $\\tan$ | \n$\\dfrac{1}{\\sqrt{3}}$ | \n$1$ | \n$\\sqrt{3}$ | \n
Since we are asked about $\\var{distheta}$, we use the $\\var{distheta}$ column of the table to determine that:
\n$\\csc\\left(\\var{distheta}\\right)=\\dfrac{1}{\\sin\\left(\\var{distheta}\\right)}=\\;\\;2$$\\csc\\left(\\var{distheta}\\right)=\\dfrac{1}{\\sin\\left(\\var{distheta}\\right)}=\\sqrt{2}$$\\csc\\left(\\var{distheta}\\right)=\\dfrac{1}{\\sin\\left(\\var{distheta}\\right)}=\\dfrac{2}{\\sqrt{3}}$
\n$\\sec\\left(\\var{distheta}\\right)=\\dfrac{1}{\\cos\\left(\\var{distheta}\\right)}=\\dfrac{2}{\\sqrt{3}}$$\\sec\\left(\\var{distheta}\\right)=\\dfrac{1}{\\cos\\left(\\var{distheta}\\right)}=\\sqrt{2}$$\\sec\\left(\\var{distheta}\\right)=\\dfrac{1}{\\cos\\left(\\var{distheta}\\right)}=\\;\\;2$
\n$\\cot\\left(\\var{distheta}\\right)=\\dfrac{1}{\\tan\\left(\\var{distheta}\\right)}=\\sqrt{3}$$\\cot\\left(\\var{distheta}\\right)=\\dfrac{1}{\\tan\\left(\\var{distheta}\\right)}=\\;\\;1$$\\cot\\left(\\var{distheta}\\right)=\\dfrac{1}{\\tan\\left(\\var{distheta}\\right)}=\\dfrac{1}{\\sqrt{3}}$
", "rulesets": {}, "extensions": [], "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"distheta": {"name": "distheta", "group": "Ungrouped variables", "definition": "if(theta=30,'\\$\\\\dfrac{\\\\pi}{6}\\$',if(theta=45,'\\$\\\\dfrac{\\\\pi}{4}\\$','\\$\\\\dfrac{\\\\pi}{3}\\$'))", "description": "'\\$\\\\frac{\\pi}{6}\\$'
", "templateType": "anything", "can_override": false}, "theta": {"name": "theta", "group": "Ungrouped variables", "definition": "random(30,45,60)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["theta", "distheta"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "The exact value of $\\csc\\Large($$\\var{distheta}\\Large)$ is
", "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "radiogroup", "displayColumns": 0, "showBlankOption": true, "showCellAnswerState": true, "choices": ["$2$
", "$\\sqrt{2}$
", "$\\dfrac{2}{\\sqrt{3}}$
", "$\\sqrt{3}$
", "$\\dfrac{1}{\\sqrt{3}}$
", "$1$
"], "matrix": ["if(theta=30,1,0)", "if(theta=45,1,0)", "if(theta=60,1,0)", 0, 0, 0], "distractors": ["", "", "", "", "", ""]}, {"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "The exact value of $\\sec\\Large($$\\var{distheta}\\Large)$ is
", "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "radiogroup", "displayColumns": 0, "showBlankOption": true, "showCellAnswerState": true, "choices": ["$2$
", "$\\sqrt{2}$
", "$\\dfrac{2}{\\sqrt{3}}$
", "$\\sqrt{3}$
", "$\\dfrac{1}{\\sqrt{3}}$
", "$1$
"], "matrix": ["if(theta=60,1,0)", "if(theta=45,1,0)", "if(theta=30,1,0)", 0, 0, 0], "distractors": ["", "", "", "", "", ""]}, {"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "The exact value of $\\cot\\Large($$\\var{distheta}\\Large)$ is
", "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "radiogroup", "displayColumns": 0, "showBlankOption": true, "showCellAnswerState": true, "choices": ["$2$
", "$\\sqrt{2}$
", "$\\dfrac{2}{\\sqrt{3}}$
", "$\\sqrt{3}$
", "$\\dfrac{1}{\\sqrt{3}}$
", "$1$
"], "matrix": ["0", "0", "0", "if(theta=30,1,0)", "if(theta=60,1,0)", "if(theta=45,1,0)"], "distractors": ["", "", "", "", "", ""]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}], "resources": ["question-resources/exact_values_radians.svg"]}]}], "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}]}